New Class of Heintzmann Exact Solution in General Relativity for an Isotropic Charged Stellar Model
American Journal of Modern Physics
Volume 6, Issue 1, January 2017, Pages: 16-22
Received: Jan. 27, 2017; Accepted: Feb. 13, 2017; Published: Mar. 7, 2017
Views 2289      Downloads 149
Authors
A. H. M. Mahbubur Rahman, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
Md. Rubayet Rahman, Science and Math Program, Asian University for Women, Chittagong, Bangladesh
Article Tools
Follow on us
Abstract
Exact solution for spherically symmetric isotropic charged fluid sphere are investigated relativistic model of an electrically charged compact star, and energy density associated with the electric fluids is on the same order of magnitude as the energy density of fluid matter itself. The analytic solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M. And try to inspect the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). Adiabatic index conform the stability of star if the adiabatic index is less than 4/3. Based on an analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 1785-248.
Keywords
Exact Solution, Einstein – Maxwell, Reissner – Nordström, Relativistic Astrophysics, Compact Star, Equation of State
To cite this article
A. H. M. Mahbubur Rahman, Md. Rubayet Rahman, New Class of Heintzmann Exact Solution in General Relativity for an Isotropic Charged Stellar Model, American Journal of Modern Physics. Vol. 6, No. 1, 2017, pp. 16-22. doi: 10.11648/j.ajmp.20170601.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Pant, N., Rajasekhara, S.: Variety of well-behaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophys. Space Sci. 333, 161-168 (2011). doi: 10.1007/s10509-011-0607-z.
[2]
Nduka, A.: Charged fluid sphere in general relativity, Gen. Relativ. Gravit. 7 (1976) 493―499, doi: 10.1007/BF00766408.
[3]
Nduka, A.: Static solutions of Einstein’s field equations for charged spheres of fluid, Acta Phys. Pol. B 9 (1978) 596―571.
[4]
Mehra, A. L., Bohra, B. L.: Gen. Relativ. Gravit. 11, 333–336 (1979). doi: 10.1007/BF00759275.
[5]
Pant, N., Faruqi, S.: Relativistic modelling of a superdense star containing a charged perfect fluid, Gravit. Cosmol. 18 (2012) 204―210, doi: 10.1134/S0202289312030073.
[6]
Pant, N., Mehta, R. N., Tewari, B. C., Astrophys. Space Sci. 327, 279 (2010).
[7]
Pant, N., Tewari, B. C., Astroph. Space Sci. 331, 645 (2010).
[8]
Pinheiro, G. and Chan, R., Gen. Rel. Grav. 40, 2149 (2008).
[9]
Usov, V. V.: Phys. Rev. D, Part. Fields 70, 067301 (2004). doi: 10.1103/PhysRevD.70.067301.
[10]
Usov, V. V., et al.: Astrophys. J. 620, 915 (2005). doi: 10.1086/427074.
[11]
Negreiros, R. P., et al.: Phys. Rev. D 82, 103010 (2010). doi: 10.1103/PhysRevD.82.103010.
[12]
Farhi, E., Olinto, A., 1986, Astrophys. J. 310, 261.
[13]
Negreiros, R. P., et al. Phys. Rev. D 80, 083006 (2009). doi: 10.1103/PhysRevD.80.083006.
[14]
Jaikumar, P., Reddy, S., Steiner, A. W.: Phys. Rev. Lett. 96 (2006) 041101.
[15]
Tolman, R. C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). doi: 10.1103/PhysRev.55.364.
[16]
Dionysiou, D. D.: Astrophys. Space Sci. 85, 331 (1982). doi: 10.1007/BF00653455.
[17]
Durgapal, M. C.: A class of new exact solutions in general relativity. J. Phys. A, Math. Gen. 15, 2637–2644 (1982). doi: 10.1088/0305-4470/15/8/039.
[18]
Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67, 104015 (2003). doi: 10.1103/PhysRevD.67.104015.
[19]
Maurya, S. K., Gupta, Y. K.: Astrophys. Space Sci. 334, 145 (2011a). doi: 10.1007/s10509-011-0705-y.
[20]
Maurya, S. K., Gupta, Y. K.: Astrophys. Space Sci. 334, 301 (2011b). doi: 10.1007/s10509-011-0736-4.
[21]
Lattimer, J. M., Prakash, M.: Phys. Rev. Lett. 94, 111101 (2005). doi: 10.1103/PhysRevLett.94.111101.
[22]
H. Heintzmann, Z. Physik 228, 489 (1969). doi: 10.1007/BF1558346.
[23]
Murad, M. H., Fatema, S.: Int. J. Theor. Phys. 52, 4342 (2013a). doi: 10.1007/s10773-013-1752-7.
[24]
Abreu, H. Hernández, L. A Nún᷉ez, Class. Q. Grav. 24, 4631 (2007). doi: 10.1088/0264-9381/24/18/005.
[25]
Li, X.-D., et al.: Phys. Rev. Lett. 83, 3776 (1999). doi: 10.1103/PhysRevLett.83.3776.
[26]
Dey, M., et al.: Phys. Lett. B 438, 123 (1998). doi: 10.1016/S0370-2693 (98)00935-6.
[27]
Weber, F.: Prog. Part. Nucl. Phys. 54, 193 (2005). doi: 10.1016/j.ppnp.2004.07.001.
[28]
Gangopadhyay, T., et al.: (2013). doi: 10.1093/mnras/stt401.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186