Please enter verification code
Special Issues
The Imaginary Mass Lambda-CDM Model
American Journal of Modern Physics
Volume 5, Issue 1, January 2016, Pages: 1-14
Received: Dec. 19, 2015; Accepted: Dec. 27, 2015; Published: Jan. 11, 2016
Views 7607      Downloads 216
Jason Cole, Department of Physics, Warped Dynamics LLC, Harper Woods, USA
Article Tools
Follow on us
The Lambda-CDM (Cold Dark Matter) standard cosmological model is the generally accepted model of modern cosmology. However, many questions remain such as it doesn’t explain what Dark matter or Dark Energy is and what it is made of. Also to be the premier cosmological model it can't explain why we see no antimatter in the universe. This paper attempts to answer those questions and many more by incorporating FTL imaginary mass (Tachyons) into the Lambda-CDM (Cold Dark Matter). Rather than having a matter-antimatter big bang this new cosmological theory uses a big bang pair production of matter and FTL imaginary matter. In so doing it explains the effects of Dark Energy, Dark matter and a host of other cosmological phenomena that the current Lambda-CDM standard cosmological model can't answer. To support this Imaginary Mass Lambda-CDM model theory an electromagnetic experimental set-up is proposed so others can test and verify(indirectly) the existence of Tachyon matter.
Lambda-CDM, Cosmology, Tachyon, Dark Energy, Dark Matter, Quantum Gravity, String Theory
To cite this article
Jason Cole, The Imaginary Mass Lambda-CDM Model, American Journal of Modern Physics. Vol. 5, No. 1, 2016, pp. 1-14. doi: 10.11648/j.ajmp.20160501.11
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
P. Kroupa, B. Famaey, K.S. de Boer, J. Dabringhausen, M. Pawlowski, C.M. Boily, H. Jerjen, D. Forbes, G. Hensler, M. Metz, "Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation" A&A 523, 32 (2010).
Andrew Liddle. An Introduction to Modern Cosmology (2nd ed.). London: Wiley, 2003.
Camille M. Carlisle, Planck Upholds Standard Cosmology, Sky & Telescope, February 10, 2015
a b Dodelson, Scott (2008). Modern cosmology (4. [print.]. ed.). San Diego, CA [etc.]: Academic Press. ISBN 978-0122191411.
Frieman, Joshua A.; Turner, Michael S.; Huterer, Dragan (September 2008). "Dark Energy and the Accelerating Universe". Annual Review of Astronomy and Astrophysics 46 (1): 385–432. arXiv: 0803.0982. Bibcode: 2008ARA&A. 46..385F. doi:10.1146/annurev.astro.46.060407.145243.
Kovac, J. M.; Leitch, E. M.; Pryke, C.; Carlstrom, J. E.; Halverson, N. W.; Holzapfel, W. L. (19 December 2002). "Detection of polarization in the cosmic microwave background using DASI". Nature 420 (6917): 772–787. arXiv: astro-ph/0209478. Bibcode: 2002Natur.420..772K. doi: 10.1038/nature01269. PMID 12490941.
Collaboration, Planck; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; et al. (2015). "Planck 2015 Results. XIII. Cosmological Parameters". arXiv: 1502.01589 [astro-ph.CO].
Spergel, D. N. (2015). "The dark side of the cosmology: dark matter and dark energy". Science 347 (6226): 1100–1102. Bibcode: 2015Sci...347.1100S. doi:10.1126/science.aaa0980. PMID 25745164.
a b Table 4 on p. 31 of Planck Collaboration. "Planck 2015 results. XIII. Cosmological parameters" (PDF). Retrieved 2015-02-18.
Appendix A of the LSST Science Book Version 2.0.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186