Study on Structural, Electronic, Optical and Mechanical Properties of MAX Phase Compounds and Applications Review Article
American Journal of Modern Physics
Volume 4, Issue 2, March 2015, Pages: 75-91
Received: Mar. 19, 2015; Accepted: Mar. 31, 2015; Published: Apr. 9, 2015
Views 7800      Downloads 665
Authors
Md. Atikur Rahman, Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
Md. Zahidur Rahaman, Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
Article Tools
Follow on us
Abstract
The term “MAX phase” refers to a very interesting and important class of layered ternary transition-metal carbides and nitrides with a novel combination of both metal and ceramic-like properties that have made these materials highly regarded candidates for numerous technological and engineering applications. A relatively new class of transition metal layered compounds Mn+1AXn, (MAX phases) where M is an early transition metal, A is a group A element most likely Al, and X is C or N with n = 1, 2, 3………..Due to their unique structural arrangements and directional bonding, these ternary compounds possess some very outstanding mechanical and chemical properties such as damage-resistance, oxidation resistance, excellent thermal and electric conductivity, machinability, and fully reversible dislocation-based deformation. These properties can be explored in the search for new phases and their composites to meet the performance goals of advanced materials with applications in fossil energy conversion technology. Systematic and detailed computational studies on MAX phase compounds can provide fundamental understanding of the key characteristics that lead to these desirable properties and to the discovery of other new and better alloys.In this paper, we review on structural, electronic, optical and mechanical properties of around 50 MAX phase compounds and their applications. From the comparative study on the result of these compounds we think that this paper will enable to researcher to explore and predict new MAX phases and new composite alloys with better physical properties as advanced materials for various applications at extreme conditions.
Keywords
MAX Phase Compounds, Electronic, Optical and Mechanical Properties, Applications
To cite this article
Md. Atikur Rahman, Md. Zahidur Rahaman, Study on Structural, Electronic, Optical and Mechanical Properties of MAX Phase Compounds and Applications Review Article, American Journal of Modern Physics. Vol. 4, No. 2, 2015, pp. 75-91. doi: 10.11648/j.ajmp.20150402.15
References
[1]
M. W. Barsoum: Prog. Solid State Chem., 2000, 28, 201–281.
[2]
Z. M. Sun, H. Hashimoto, Z. F. Zhang, S. L. Yang and S. Tada: Mater. Trans., 2006, 47, 170–174.
[3]
W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 672 (1963).
[4]
W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 844 (1963).
[5]
W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 1198 (1964).
[6]
W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 95, 178 (1964).
[7]
W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 95, 1004 (1964).
[8]
M. W. Barsoum, Prog. Solid State Chem., 28, 201 (2000).
[9]
H. B. Zhang, Y. W. Bao, and Y. C. Zhou, J. Mater Sci. Technol., 25, 1 (2009).
[10]
J. Y. Wang and Y. C. Zhou, Annual Rev. Mater. Res., 39, 415 (2009).
[11]
P. Eklund, M. Beckers, U. Jansson, et al., Thin Solid Films, 518, 1851 (2010).
[12]
J. P. Palmquist, S. Li, P. O. Persson, et al., Phys. Rev., B70, 165401 (2004).
[13]
H. Hogberg, P. Eklund, J. Emmerlich, et al., J. Mater. Res., 20, 779 (2005).
[14]
S. E. Lofland, J. D. Hettinger, T. Meehan, et al., Phys. Rev., B74, 174501 (2006).
[15]
A. D. Bortolozo, Z. Fisk, O. H. Sant’Anna, et al., Physica, C469, 256 (2009).
[16]
Barsoum, M.W., Brodkin, D., & El-Raghy, T., Layered Machinable Ceramics, For High Temperature Applications. Scrip. Met. et. Mater. 36, 535-541 (1997)
[17]
Nowotny, H., Struktuchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem. 2, 27 (1970)
[18]
Barsoum, M.W. & El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. J. Amer. Cer. Soc. 79 (7), 1953-1956 (1996)
[19]
Barsoum, M.W. & El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. J. Amer. Cer. Soc. 79 (7), 1953-1956 (1996)
[20]
Yuxiang Mo, Paul Rulis, and W.Y. Ching, Yuxiang Mo, Paul Rulis, W.Y. Ching, Electronic structure and Optical properties of 20 MAX phase compounds, submitted to Phys. Rev. B. (2012).
[21]
T. H. Scabarozi, J. Roche, A. Rosenfeld, S. H. Lim, L. Salamanca-Riba, I. Takeuchi, M. W.Barsoum, J. D. Hettinger, S. E. Lofland, Synthesis and Characterization of Nb2AlC Thin Films, Thin Solid Films, 517, 2920-2933 (2009).
[22]
C. M. Fang, R. Ahuja and O. Eriksson: J. Appl. Phys., 2007, 101, 013511.
[23]
G. Hug: Phys. Rev. B, 2006, 74B, 184113.
[24]
D. Music, Z. M. Sun and J. M. Schneider: Solid State Commun., 2005, 133, 381–383.
[25]
S. Dubois, T. Cabioc’h, P. Chartier, V. Gauthier and M. Jaouen: J. Am. Ceram. Soc., 2007, 90, 2642- 2644.
[26]
M. B. Kanoun and M. Jaouen: J. Phys.-Cond. Matter, 2008, 20, 085211.
[27]
J. Etzkorn, M. Ade and H. Hillebrecht: Inorg. Chem., 2007, 46, 1410–1418.
[28]
Y. C. Zhou, F. L. Meng and J. Zhang: J. Am. Ceram. Soc., 2008, 91, 1357–1360.
[29]
A. Grechnev, S. Li, R. Ahuja, O. Eriksson, U. Jansson and O. Wilhelmsson: Appl. Phys. Lett., 2004, 85, 3071–3073.
[30]
H. Ho¨gberg, P. Eklund, J. Emmerlich, J. Birch and L. Hultman: J. Mater. Res., 2005, 20, 779–782.
[31]
C. F. Hu, Z. J. Lin, L. F. He, Y.W. Bao, J. Y. Wang,M. S. Li and Y. C. Zhou: J. Am. Ceram. Soc., 2007, 90, 2542–2548.
[32]
C. F. Hu, F. Z. Li, L. F. He, M. Y. Liu, J. Zhang, J. M. Wang, Y. W. Bao, J. Y. Wang and Y. C. Zhou: J. Am. Ceram. Soc., 2008, 91, 2258–2263.
[33]
M. W. Barsoum, J. Golczewski, H. J. Seifert and F. Aldinger: J. Alloys Compd, 2002, 340, 173–179.
[34]
T. El-Raghy, S. Chakraborty and M. W. Barsoum: J. Eur. Ceram. Soc., 2000, 20, 2619–2625.
[35]
W. B. Tian, P. L. Wang, G. J. Zhang, Y. M. Kan, Y. X. Li and D. S. Yan: Scr. Mater., 2006, 54, 841 846.
[36]
Holm, B., Ahuja, R., Li, S., and Johansson,B. (2002) Theory of ternary layered systemTi-Al-N. J. Appl. Phys., 91, 9874–9877.
[37]
Li, C.-W. and Wang, Z. (2010) Firstprinciplesstudy of structural, electronic,and mechanical properties of the nanolaminatecompound Ti4GeC3 under pressure.J. Appl. Phys., 107, 123511.
[38]
Du, Y.L., Sun, Z.M., Hashimoto, H., andTian, W.B. (2008a) Elastic propertiesof Ta4AlC3 studied by first-principlescalculations. Solid State Commun., 147,246–249.
[39]
Wang, J., Zhou, Y., Lin, Z., and Hu, J. (2008)Ab initio study of polymorphism in layeredternary carbide M4AlC3 (M = V, Nband Ta). Scr. Mater., 58, 1043–1046.
[40]
He, X., Bai, Y., Zhu, C., and Barsoum, M.W.(2011) Polymorphism of newly-discoveredTi4GaC3: a first-principle study. ActaMater., 59, 5523–5533.
[41]
He, X., Bai, Y., Zhu, C., Sun, Y., Li, M., andBarsoum, M.W. (2010) General trendsin the structural, electronic and elasticproperties of the M3AlC2 phases (M =transition metal): a first-principle study.Comput. Mater. Sci., 49, 691–698.
[42]
Holm, B., Ahuja, R., and Johansson, B.(2001) Ab initio calculations of the mechanicalproperties of Ti3SiC2. Appl. Phys.Lett., 79, 1450.
[43]
Finkel, P., Seaman, B., Harrell, K.,Hettinger, J.D., Lofland, S.E., Ganguly,A., Barsoum, M.W., Sun, Z., Li, S., andAhuja, R. (2004) Low temperature elastic,electronic and transport properties ofTi3Si1-xGexC2 solid solutions. Phys. Rev. B,70, 085104.
[44]
Sun, Z., Li, S., Ahuja, R., and Schneider,J.M. (2004) Calculated elastic properties ofM2AlC (M = Ti, V, Cr, Nb and Ta). SolidState Commun., 129, 589–592.
[45]
Du, Y.L., Sun, Z.-M., Hashimoto, H., andBarsoum, M.W. (2009a) Theoreticalinvestigations on the elastic and thermodynamicproperties of Ti2AlC0.5N0.5solid solution. Phys. Lett. A, 374, 78–82.
[46]
Du, Y.L., Sun, Z.M., Hashimoto, H., andTiana, W.B. (2008b) First-principlesstudy on electronic structure and elasticproperties of Ti2SC. Phys. Lett. A, 372,5220–5223.
[47]
Bouhemadou, A. (2009a) Calculated structural,electronic and elastic properties ofM2GeC (M = Ti, V, Cr, Zr, Nb, Mo, Hf,Ta and W). Appl. Phys. A, 96, 959–967.
[48]
Bouhemadou, A. (2008b) Prediction studyof structural and elastic properties underpressure effect of M2SnC (M = Ti, Zr, Nb,Hf). Physica B-Condens. Matter, 403, 2707.
[49]
Bouhemadou, A. and Khenata, R. (2007)Prediction study of structural and elasticproperties under the pressure effect ofM2GaC, M = Ti, V, Nb, Ta. J. Appl. Phys.,102, 043528.
[50]
Bouhemadou, A. and Khenata, R. (2008)Structural, electronic and elastic propertiesof M2SC (M = Ti, Zr, Hf) compounds.Phys. Lett. A, 372, 6448–6452.
[51]
Wang, J. and Zhou, Y. (2004a) Dependenceof elastic stiffness on electronic bandstructure of nanolaminate M2AlC (M =Ti,V,Nb and Cr) ceramics. Phys. Rev. B,69, 214111.
[52]
Sun, Z., Li, S., Ahuja, R., and Schneider,J.M. (2004) Calculated elastic properties ofM2AlC (M = Ti, V, Cr, Nb and Ta). SolidState Commun., 129, 589–592.
[53]
Bai, Y., He, X., Li, M., Sun, Y., Zhu, C., andLi, Y. (2010) Ab initio study of the bondingand elastic properties of Ti2CdC. SolidState Sci., 12, 144–147.
[54]
Cover, M.F., Warschkow, O., Bilek, M.M.,and McKenzie, D.R. (2009) A comprehensivesurvey of M2AX phase elasticproperties. J. Phys.: Condens. Matter, 21,305403.
[55]
Kanoun, M.B., Goumri-Said, S., and Reshak,A.H. (2009b) Theoretical study of mechanical,electronic, chemical bondingand optical properties of Ti2SnC, Zr2SnC,Hf2SnC and Nb2SnC. Comput. Mater. Sci.,47, 491–500.
[56]
Kanoun, M.B., Goumri-Said, S., and Jaouen, M. (2009a) Steric effect on the M site of nanolaminate compounds M2SnC (M = Ti, Zr, Hf and Nb). J. Phys.: Condens.Matter, 21, 045404–045406.
[57]
Scabarozi, T.H., Amini, S., Leaffer, O., Ganguly, A., Gupta, S., Tambussi, W., Clipper, S., Spanier, J.E., Barsoum, M.W., Hettinger, J.D. et al. (2009) Thermal expansion of select MAX phases measured by high temperature X-ray diffraction and dilatometry. J. Appl. Phys, 105, 013543.
[58]
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[59]
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
[60]
W. Y. Ching and P. Rulis, Phys. Rev. B 73, 045202 (2006).
[61]
W. Y. Ching, L. Ouyang, P. Rulis, and H. Yao, Phys. Rev. B 78, 014106 (2008).
[62]
W. Y. Ching and P. Rulis, Phys. Rev. B 77, 035125 (2008).
[63]
L. Liang, P. Rulis, B. Kahr, and W. Y. Ching, Phys. Rev. B 80, 235132 (2009).
[64]
S. Aryal, P. Rulis, and W. Y. Ching, Am. Mineral. 93, 114 (2008).
[65]
L. Liang, P. Rulis, and W. Y. Ching, Acta Biomater. 6, 3763 (2010).
[66]
W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick, Phys. Rev. B 83, 155109 (2011).
[67]
P. Rulis and W. Ching, J. Mater. Sci. 46, 4191 (2011).
[68]
P. Rulis, H. Yao, L. Ouyang, and W. Y. Ching, Phys. Rev. B 76, 245410 (2007).
[69]
W. Y. Ching, P. Rulis, L. Ouyang, and A. Misra, Appl. Phys. Lett. 94, 051907 (2009).
[70]
W. Y. Ching, P. Rulis, L. Ouyang, S. Aryal, and A. Misra, Phys. Rev. B 81, 214120 (2010).
[71]
L. Liang, P. Rulis, L. Ouyang, and W. Y. Ching, Phys. Rev. B 83, 024201 (2011).
[72]
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1956).
[73]
E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, A. I. Lichtenstein, and B. Johansson, J. Appl. Phys. 101, 123519 (2007).
[74]
S. Gupta, D. Filimonov, T. Palanisamy, T. El-Raghy and M. W. Barsoum: Wear, 2007, 262, 1479–1489.
[75]
K. Tanaka, M. Koiwa, Intermetallics 4 (1996) S29eS39.
[76]
S.F. Pugh, Philos. Mag. 45 (1954) 823.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186