Assumptions of Metric Variable-Type in Bell’s Theorem
American Journal of Modern Physics
Volume 2, Issue 6, November 2013, Pages: 350-356
Received: Oct. 3, 2013; Published: Nov. 30, 2013
Views 3232      Downloads 120
Author
Fosco Ruzzene, Department of Econometrics & Business Statistics, Monash University 900 Dandenong Road, Caulfield East, Australia
Article Tools
PDF
Follow on us
Abstract
An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.
Keywords
Bell’s Inequalities, Non-Classical Measurability, Metric Variables, Projective Geometry
To cite this article
Fosco Ruzzene, Assumptions of Metric Variable-Type in Bell’s Theorem, American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 350-356. doi: 10.11648/j.ajmp.20130206.22
References
[1]
J. S. Bell, Speaking and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, UK 1987)
[2]
A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49 n. 2 (1982) p. 91
[3]
A. J. Legget, Found. Phys. vol 33, no 10 1469 (2003)
[4]
S. Groblacher, T. Paterek, R. Kaltsiefer, C. Bruckner, M. Zukowski, M ASpelmeyer, A. Zeilinger, Nature 446, 871 (2007)
[5]
A. Aspect, Nature 438 745 (2005)
[6]
G. Ghirardi, Journal of Physics: Conf. Series 174 (2009) 012013
[7]
S. Goldstein, T. Norsen, D. Tausk, N. Zanghi, Scholarpedia, 6(10):8378
[8]
T. Norsen, American Journal of Physics 79, 1261 (2011); T. Norsen, Found. Phys. vol. 37, no 3 311 (2007)
[9]
G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, H. M. Wiseman, Phys. Rev. Lett. 94, 220405 (2005)
[10]
M. Ozawa, Phys, Lett. A.318 (2003) 21
[11]
J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegaw, Nature Physics vol 8, 185 March 2012
[12]
H. Wiseman, N. J. Phys. 9, 165 (2007)
[13]
S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. Krister Shalm, A. M. Steinberg, Science, vol 332 1170 (2011)
[14]
J. S. Lundeen, A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009)
[15]
V. Allori, S. Goldstein, R. Tumulka, N. Zanghi British J. Philos. Sci. 59 353 (2008)
[16]
J. S. Bell, Physics, 1, 195 – 200 (1964)
[17]
Angel G. Valdenebro, Eur. J. Phys. 23 569 (2002)
[18]
Abner Shimony, "Bell’s Theorem", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/bell-theorem
[19]
David Hilbert, The Foundations of Geometry 2005 EBook 17384
[20]
A. M. Cetto, L. De La Pena, and E. Santos, Phys. Lett. 113A, 304 (1985)
[21]
J. S. Bell, Ann. (N. Y.) Acad. Sci. 480, 263 (1986)
[22]
O. Cohen, Phys. Rev. A. vol 56, no. 5, 3484 (1997)
[23]
J. Kiukas, R. F. Werner, J. of Math. Phys. v51, n7, 072105 (2010)
[24]
Fosco Ruzzene Geometrical Interpretation of Quantum Mechanics (unpublished)
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186