Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample
European Journal of Biophysics
Volume 2, Issue 5, October 2014, Pages: 61-71
Received: Nov. 2, 2014; Accepted: Nov. 26, 2014; Published: Nov. 28, 2014
Views 2278      Downloads 127
Authors
F. H. Abd El-kader, Physics Department, Faculty of Science, Cairo University, Giza, Egypt
S. A. Gaffar, Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
A. F. Basha, Physics Department, Faculty of Science, Cairo University, Giza, Egypt
S. I. Bannan, Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
M. F. H. Abd El-kader, Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
Article Tools
Follow on us
Abstract
Thermally stimulated depolarization current (TSDC) and thermal sampling (TS) method were used to systematically characterize the α-relaxation process in gelatin and PVA homopolymers and their blend sample of 50/50 (wt/wt %) composition. In addition, γ-irradiation effect on TSDC spectra of samples under investigation was studied. Measurements of TSDC at different polarizing field strengths, polarization temperatures and times made it possible to obtain a complete picture of kinetic transitions, local modes of motion and space charge polarization in one heating cycle. On γ-irradiation, the change in shape, position and area of the α-relaxation peak of the samples were attributed to the variation of distribution function of associated relaxation times. The thermal sampling procedure was applied to decompose the complex relaxations into their narrowly distributed components. The molecular parameters such as activation energy (Ea) and pre-exponential factor (τo) for TS processes have been estimated. A linear relationship between the activation energy and logarithm of pre-exponential factor confirms the existence of a compensation behavior. The compensation temperature Tc and compensation time τc for the present samples have been determined.
Keywords
Gelatin/PVA, Thermal Stimulated Depolarization Current, Thermal Sampling Process, Relaxation Processes
To cite this article
F. H. Abd El-kader, S. A. Gaffar, A. F. Basha, S. I. Bannan, M. F. H. Abd El-kader, Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample, European Journal of Biophysics. Vol. 2, No. 5, 2014, pp. 61-71. doi: 10.11648/j.ejb.20140205.12
References
[1]
J. Vanderschueren, J. Gasiot, Field-induced thermally stimulated currents. In: P Brauenlich, editor. Thermally stimulated currents in solids. Topics in applied physics. Springer: Berlin, (1979) P. 135.
[2]
E. Dantras, J. Dandurand, C. Lacabann, A. Caminade, J. Majoral, Macromolecules, 37 (2004) 2812.
[3]
F. H. Abd El-kader, A. M. Shehap, M. S. Abo-Ellil, K. H. Mahmoud, J. Appl. Polym. Sci., 95 (2005) 1342.
[4]
V. M. Gun’ko et al, Adv. Colloid Interface Sci., 131 (2007) 1.
[5]
H. C. Cheng, Y. W. Fang, F. M. Ching, T. L. Wei, D. H. Ching, International Journal of Biological Macromolecules, 43 (1) (2008) 37.
[6]
S. U. Haq, S. H. Jayaram, E. A. Cherney, G. G. Raju, Journal of Electrostatics, 67 (2009) 12.
[7]
S. H. Yoon, J. S. Park, S. H. Kim, D. Y. Kim. Appl. Phys. Lett. 103, 042901 (2013); doi: 10.1063/1.4816380.
[8]
S. H. Yoon, S. H. Kim, D. Y. Kim. J. Appl. Phys. 114, 074102 (2013); doi: 10.1063/1.4818947
[9]
L. L. Hench, E. C. Ethridge, Biomaterials. Academic press, NewYork, 1982.
[10]
A. E. Bell, Gel structure and food quality. London: Elsevier Applied Science, (1989) P. 251.
[11]
M. Bendszus, R. Klein, R. Burger, M. M. Warmuth, E. Hofmann, L. Solymosi, Am. J. Neuroradiol, 21 (2) (2000) 255.
[12]
C. H. Cholakis, W. Zingg, M. V. Sefton, J. Biomed. Mater. Res., 23 (1989) 417.
[13]
S. Horiike, S. Matsuzawa, J. Appl. Polym. Sci., 58 (1995) 1335.
[14]
A. F. Basha, H. A. Abdel samed, M. Amin, Egypt J. Phys., 16 (2) (1985) 299.
[15]
J. V. Turnhout, Topics in applied physics. G. M. Sessler, editor. Springer-Verlag: Berlin, (1989).
[16]
G. M. Sessler, Electrets. Springer-Verlag: Berlin, Heidelberg, N.Y., (1980).
[17]
J. V. Turnhout, Thermally stimulated discharge of polymer electrets. Elsevier, Amsterdam, (1975).
[18]
F. Mano, N. T. Correla, J. J. M. Ramos, A. C. Fernanades, J. Polym. Sci. Polym. Phys. 33 (1995) 269.
[19]
R. Sharma, L. V. Sud, J. Phys. D: Appl. Phys., 14 (1981) 1671.
[20]
F. H. Abd El-kader, G. Attia, S. S. Ibrahim, J. Appl. Polym. Sci., 50 (1993) 1281.
[21]
H. S. Ragab, M. S. Abo El-llil, A. Shehab, F. H. Abd El-kader, J. Appl. Polym. Sci., 87 (2003) 1748.
[22]
V. K. Jain, C. L. Gupta, R. K. Jain, R. C. Tyagi, Thin Solid Films, 48 (1978) 175.
[23]
P. K. C. Pillai, B. K. Gupta, M. Goel, J. Polym. Sci. Part B: Polym. Phys., 19 (1981) 1461.
[24]
W. K. Sakamoto, S. Kagesawa, D. H. Kanda, D. K. Das-cupta, J. Matter. Sci., 33 (1998) 3325.
[25]
G. Teyssedra, C. Lacabanne, Polymer, 36 (1995) 3641.
[26]
P. Colomer, S. Montserrat, J. Belvona, J. Mat. Sci., 33 (1998) 1921.
[27]
S. B. Sawarkar, V. S. Deogaonkar, S. V. Pakade, S. P. Yawale, Indian J. Pure and applied phys., 35 (1997) 281.
[28]
M. Topic, K. A. Mogus-Milon, Z. Katovic, Polymer, 28 (1987) 33.
[29]
M. Mudarra, A. Joumba, J. Belana, A. Tou, Polymer, 40 (1999) 6977.
[30]
A. C. Lilly, R. M. Henderson, P. S. Sharp, J. Appl. Phys., 41 (1970) 2001.
[31]
M. M. Perlman, J. Appl. Phys., 42 (1971) 2645.
[32]
N. G. McCrum, B. E. Read, G. Williams, An elastic and dielectric effects in polymeric solids. J. Wiley. New York, (1967).
[33]
P. Huo, P. Cebe, J. Polym. Sci. part B: Polym. Phys., 30 (1992) 239.
[34]
P. Pillai, P. Nair, R. Nath, Polymer, 17 (1976) 921.
[35]
T. W. Wilson, R. E. Fornes, R. D. Gilbert, T. D. Memory, J. Polym. Sci. B: Polym. Phys., 26 (1988) 2029.
[36]
S. T. Takashima, Dielectric properties of proteins. In: Physical principle and techniques of protein chemistry part A. J. Leach, editor. Academic press. Ch. 6, (1969).
[37]
W. W. Parkinson, Encyclopedia of polymer science technique. N. M. Bikals, & N. G. Gaylord, editors. John Wiley and Sons Inc. New York, (1969).
[38]
J. V. Turnhout, Electrets. Springer-Verlag, Berlin, (1980).
[39]
A. Nogales, B. B. Sauer, J. Polym. Sci. B: Polym. Phys., 36 (1998) 913.
[40]
B. B. Sauer, N. V. Dipaolo, P. Avakian, W. G. Kampert, H. W. Starkweather, J. Polym. Sci. part B: Polym. Phys., 31 (12) (1993) 1851.
[41]
M. D. Migahed, M. T. Ahmed, A. E. Kotp, M. El-Henawy J. Appl. Phys., 78 (8) (1995) 5079.
[42]
B. B. Sauer, P. Avakin, H. W. Starkweather, B. S. Hsiao, Macromolecules, 23 (1990) 5119.
[43]
B. B. Sauer, B. S. Hsiao, J. Polym. Sci. part B: Polym. Phys., 31 (8) (1993) 917.
[44]
C. Bucci, R. Fieshi, G. Guidi, Phys. Rev., 148 (1966) 816.
[45]
J. J. Del Val, A. Alegria, J. Colmenero, C. Lacabanne, J. Appl. Phys., 59 (11) (1986) 3829.
[46]
M. Mudarra, J. Belana, J. C. Canadas, J. A. Diego, J. Polym. Sci. Part B: Polym. Phys., 36 (11) (1998) 1971.
[47]
G. L. L. Ushcheikin, Electric properties of polymers, investigation methods, Moscow, Klimiya, (1988).
[48]
R. J. J. Moura, J. F. Mano, B. B. Sauer, Polymer, 38 (1997) 1081.
[49]
A. Bernes, R. F. Boyer, D. Chatain, C. Lacabanne, J. P. Ibar, Amorphous state of polymer. S. E. Keinath, editor. Plenum Press. New York, (1987).
[50]
J. P. Ibar, Polym. Eng. Sci., 31(20) (1991) 1467.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186