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Preface

In Part I we present an axiomatic frame in which many results of the K-theory for
C*-algebras are proved. In Part II we construct an example for this axiomatic theory,
which generalizes the classical theory for C*-algebras. This last theory starts by
associating to each C*-algebra F the C*-algebras of square matrices with entries in F.
Every such C#*-algebra of square matrices can be obtained as the projective
representation of a certain group with respect to a Schur function for this group with
values in C (Definition 5.0.1). The above mentioned generalization consists in replacing
this Schur function by an arbitrary Schur function which satisfies some axiomatic
conditions. Moreover this Schur function can take its values in a commutative unital
C*-algebra E instead of C. In this case this K-theory does not apply to the category of
C*-algebras, but to the category of E-C*-algebras (Definition 1.1.1), which are
C*-algebras endowed with a supplementary structure (every C*-algebra can be endowed
with such a supplementary structure (Proposition 1.1.3)). Up to some definitions and
notation Part II is independent of Part I.

In general we use the notation and the terminology of [1]. In the sequel we give a list

of notation used in this book.

1) T (respectively IR) denotes the field of complex (respectively real) numbers, IN
denotes the set of natural numbers (0 ¢ IN), IN* :=INU{0}, Z denotes the group of
integers, and foreveryn € N* weput N, :={ k€ N| k <n}and Z, :=Z /(nZ).

2) For every set A, Card A denotes the cardinal number of A and id4 denotes the
identity map of A. If x is a map defined on A and B is a subset of A then x|B denotes
the restriction of x to B.

3) Let (Q;)jes be a family of topological spaces and let Q be the disjoint union of this
family. The topological sum of the family () je; is the topological space obtained
by endowing Q with the topology { UcCQ| jeJ=UNK; isanopensetof Q; }

4) If Q is a topological space and G is a C*-algebra then € (Q,G) denotes the C*-
algebra of continuous bounded maps of Q into G (endowed with the supremum
norm). If Q is a locally compact space then %((2,G) denotes the C*-algebra of
continuous maps of Q into G vanishing at the infinity.

5) © denotes the algebraic tensor product of vector spaces.

6) ~ means isomorphic.
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Axiomatic K-theory







Throughout Part I we endow {0, 1} with the structure of a group by identifying it with
Z, and take i € {0,1}.
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Chapter 1

The Axiomatic Theory






1.1 E-C*-algebras

1.1 E-C#*-algebras

DEFINITION 1.1.1 In this book we call E-C*-algebra a C*-algebra F endowed with a

bilinear map (exterior multiplication)
ExXF—F, (a,x)— ox
such that for all o, € E and x,y € F,
(@+p)x=ox+PBy, (af)xr=a(fx), (ax)"=a’x", [lox|<|allx],
o(x+y)=ax+oy, o(xy) = (ax)y = x(ay), lpx=x.
An E-C*-subalgebra (E-ideal) of F is a C*-subalgebra (a closed ideal) G of F such that
(a,x) EExXG=ax€eG.

If F,G are E-C*-algebras then a C*-homomorphism ¢ : F — G is called E-linear or
an E-C*-homomorphism if for all (a,x) € E X F, @¢(ax) = a@x. A bijective
E-C*-homomorphism is called E-C*-isomorphism. We denote by 0 the E-C*-algebra
having a unique element. We denote by Mg the category of E-C*-algebras for which the
morphisms are the E-linear C*-homomorphisms. In particular Mg is the category of all

C*-algebras.

If G is an E-ideal of the E-C*-algebraF then the C*-algebra F/G has a natural

structure of an E-C*-algebra and
0—G6-%FY%F/G—0

is an exact sequence in Mg, where ¢ denotes the inclusion map and  the quotient map.
Conversely, if
0—F-%65H—0

is an exact sequence in Mg then F is an E-ideal of G and H ~ G/F.

DEFINITION 1.1.2 If (Fj)jey is a finite family of E-C*-algebras then we denote by
I1 F;j the E-C*-algebra obtained by endowing the corresponding C*-algebra [] F; with
jeJ jeJ

the bilinear map

Ex|]F—T1F, (o, (x))jes) — (ox))jes -
il jer
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Chapter 1 The Axiomatic Theory

PROPOSITION 1.1.3 Every C*-algebra can be endowed with the structure of an E-C*-
algebra.

Let F be a C*-algebra. Let Q be the spectrum of £ and w €  and put
ExXF—F, (a,x)— o(o)x.

It is easy to see that F' endowed with this exterior multiplication is an E-C*-algebra. W

EXAMPLE 1.1.4 Let Q be a finite set and E := € (Q,T).

a) Let (Fp)epco be a finite family of C*-algebras and F := [ Fy. If we put for all

0eQ
(a,x) €EXF,
ox:Q—F, 0+ o(0)xy

then F endowed with the exterior multiplication
ExXF—F, (a,x)— ax
is an E-C*-algebra.

b) Let F be an E-C*-algebra and for every ® € Q put

1 if o'=0
0 if o+#w

)

e Q—T, a)’»—>{

Fp:={epx|x€F}.
Then Fy is a C*-algebra for all @ € Q and F ~ [] Fg, with the meaning of a).

[01S9)

EXAMPLE 1.1.5 Let Q be a discrete locally compact space, Q* a compactification of

Q E = €Q"T), (Fo)weco a family of C*-algebras, and F := T] Fy
)

limg e || X0 = 0}) If we put for all (0t,x) € E X F

<resp.F = {xE I1 Fo
weQ
ox:Q—F, o0+ o(0)xy
then ax € F for all (a,x) € E X F and F endowed with the exterior multiplication
ExXF—F, (a,x)— ax

is an E-C*-algebra. |

8 Science Publishing Group



1.2 The Axioms

1.2 The Axioms

DEFINITION 1.2.1 We denote by Ky and K| two covariant functors from the category
IME to the category of additive groups. We denote by O the group which has a unique
element and call K-null an E-C*-algebra F for which K;(F) = 0. Let F % Gbea
morphism in Mg. We say that ¢ is K-null if K;(¢) = 0. We say that ¢ factorizes

through null if there are morphisms F 2 H and H %> G in g such that ¢ = ¢" 0 ¢' and
such that H is K-null.

We have K; (idr) = idk, ) for every E-C*-algebra F. Every morphism which factorizes
through null is K-null.

AXIOM 1.2.2 (Null-axiom) K;(0)=0.

AXIOM 1.2.3 (Split exact axiom) If
o Y
0—F—G.+H—0
is a split exact sequence in Mg then
Ki(9) L 1U/EN
0 — Ki(F) ——— Ki(G) & Ki(H)—0

is a split exact sequence in the category of additive groups.

It follows that the map
Ki(F)xK;(H) — K;(G), (a,b)—K;(¢)a+K;(A)b
is a group isomorphism.
DEFINITION 1.2.4 Let ¢,y : F — G be morphisms in Mg. We say that ¢ and y are
homotopic if there is a path

¢SZF_>G, S€[071]
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Chapter 1 The Axiomatic Theory

of morphisms in Mg such that ¢o = @, ¢ = ¥, and the map
[0,1] — G, s— ¢sx
is continuous for every x € F.

We say that a pair F N G G Y F of morphisms in Mg is a homotopy if o @ is
homotopic to idr and @ oy is homotopic to idg. In this case we say that F and G are
homotopic. F is called null-homeotopic if it is homotopic to the E-C*-algebra 0.

AXIOM 1.2.5 (Homotopy axiom) If ¢,y : F — G are homotopic morphisms in
Mg then K; ((p) =K; (l[/)
DEFINITION 1.2.6 We associate to every exact sequence
0—F%65LH—0
in Mg two group homomorphisms (called index maps)

6[1K5(H) —>Ki+1 (F) .

AXIOM 1.2.7 (Six-term axiom) For every exact sequence in Mg
0—F %65 H—0

the six-term sequence

K K
Ko(F) 22 ky(G) 2W ko (m)

] !

Ki(H) «——— Ki(G) «+—— Ki(F)
Ki(y) Ki(9)

&

is exact.

AXIOM 1.2.8 (Commutativity of the index maps) If the diagram in g

0 F-—*,6¢ Y H 0
[ l ¢2l lfl)s
0 F' G H 0
(p/ ll//
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1.3 Some Elementary Results

is commutative and has exact rows then the diagram

Ki(H) —2— K1 (F)

Ki(%)l lKi+1(¢1)
Ki(H') —— Ki1(F')
8

is commutative, where 8; and 8] denote the index maps associated to the upper and the

lower row of the above diagram, respectively.

Remark. The above axioms are fulfilled if K; (F) = 0 for all E-C*-algebras F .

1.3 Some Elementary Results

PROPOSITION 1.3.1 If
v
0—F-2 G H—0

is a split exact sequence in Mg then its index maps are 0.

By the split exact axiom (Axiom 1.2.3),

Ki(9) i
0—K(F)——Ki(G) xn K(H)—0
is a split exact sequence in the category of additive groups and the assertion follows from

the six-term axiom (Axiom 1.2.7). |

DEFINITION 1.3.2 Let (Fj)jey be a finite family of E-C*-algebras, F := [] F;j and for
jeJ
every j € J let Q; : Fj — F be the canonical inclusion and y; : F — F; the canonical

projection. We define

P epi I_IKi (Fj) — Ki(F), (aj)jes— Z;Ki((l’j)ajv
j€ je

W), Ki (F) — ]';F, a— (Ki(y))a)jes -
JE
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Chapter 1 The Axiomatic Theory

PROPOSITION 1.3.3 If (F})je; is a finite family of E-C*-algebras then the map
it | 1Ki(Fj) — K (HF)
Jjel jeJ
is a group isomorphism and
F)eni K (HF) — [k (F))
jeJ jeJ

is its inverse.

If J = 0 then the assertion follows from the null-axiom (Axiom 1.2.2). The assertion is
trivial for Card J = 1. We prove the general case by induction with respect to Card J. Let
Jo € J and assume the assertion holds for J' :=J\ {jo}. We denote by

Fi, —[]F, A:J1E—T1F
jet jeJ’ jed
the canonical inclusion maps and by
v: [/ —[1F
jeJ jel'
the canonical projection. Then
73
0— F, —=[[Fx [1F—0
Jjel jeJ
is a split exact sequence in Mg . By the split exact axiom (Axiom 1.2.3) the map
‘P,’ : Ki (FJO> X K,’ <H Fj) — K,’ <HFJ> R (a,b) — K,((p)a—i—K, ()y)b
jeJ jeJ

is a group isomorphism. Since

Fio (idK,-(F,-O) X q><Fj)jEJ”i) = P(£))jeyi

it follows from the induction hypothesis that @ Fy); is a group isomorphism.

je sl

The last assertion follows from ;o @; = idf, for every j € J and

Z(pjolllj—ldnp .
jeJ
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PROPOSITION 1.3.4 Let (F; ﬂ) F ]’ ) jes be a finite family of morphisms in Mg,

F=11#, Fr=T1#,

jeJ jeJ
and for every j € J let
¢;j:Fj—F, @;:F, — F'

be the inclusion maps. Then the diagram

is commutative.

For every j € J the diagram

; l l }2, 0

Fl —— F'
9]

is commutative so the diagram

() 29 ko

(
k(o) | |& (}gj@-)

Ki(F!) —— Ki(F')

()

is also commutative. For (a;)jc; € [ K; (F;), by the above,
jel

jel jer jer =

K; <H¢j> ° <Z Ki(‘Pj)) (aj)jer = Ki <H¢j> Y Ki(9j)a;=
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=) K <H¢k> (¢j)a; =Y Ki(¢))Ki(9;)a; =

jeJ keJ jeJ
(ZK (P] ) ¢j)aj jeJ = (ZK (Pj ) <H¢j> a] J€d s
jet jeJ jes
which proves the assertion. |
PROPOSITION 1.3.5
a) If F % G, G Y Fisa homotopy in Mg then
Ki(¢) o Ki(y) = idg, ), Ki(y) oKi(p) = idg,r) -

b) If F and G are homotopic E-C*-algebras then K;(F) and K;(G) are isomorphic.

c) If the E-C*-algebra F is null-homotopic then it is K-null.

a) follows from the homotopy axiom (Axiom 1.2.5).

b) follows from a).

¢) follows from b) and from the null-axiom (Axiom 1.2.2). |

PROPOSITION 1.3.6 Let

0—F- e YSH 0

be an exact sequence in Mg .

a) If F (resp. H) is K-null then
K; i
K(G) Y k() (resp. Ki(F) % Ki(G))
is a group isomorphism.

b) If G is K-null then

is a group isomorphism.
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c) If ¢ is K-null then the sequences

0 — Ki(G)
is exact.

d) If v is K-null then the sequences

Kir1(9)

S
0 — Ki(H) — Kis1(F) — Ki11(G) — 0

is exact.

e) The index maps of a split exact sequence are equal to 0.

a), b), ¢), and d) follow from the six-term axiom (Axiom 1.2.7).

e) follows from the six-term axiom (Axiom 1.2.7) and from the split exact axiom

(Axiom 1.2.3).

PROPOSITION 1.3.7 An Mg -triple is a triple (F1,F,,F3) such that Fy is an E-C*-
algebra, F, is an E-ideal of F\, and F3 is an E-ideal of F\ and of F,. We denote for all
J.k €IN3, j <k, by Q;j : Fx — F; the inclusion map, by ;i : F; — F;/F the quotient

map, and by 8 ; : Ki(Fj/Fi) — Fy the index maps associated to the exact sequence in

ME
0— K255 Y p R —0.

. . . ¢12/F; .
a) There is a unique morphism F, /| F; —-— F\ /F3 in Mg such that

Vizo@io=(Qi2/F3)oyss.

b) The diagram

Ki(913) Ki(y13)
LSS s

Ki(F3) Ki(F1) Ki(F1/F3) L Kit1(F3)

:T Ki(‘Pl,Z)T TKK(PI,Z/FS) T:

Ki(F3) —— Ki(R) —— Ki(R2/F3) —— Kit1(F3)
Ki(923) Ki(v23) 53,

is commutative.

Science Publishing Group
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Chapter 1 The Axiomatic Theory

a) is easy to see.

b) follows from a), @1 » © ¢ 3 = @1 3, and from the axiom of commutativity of the index
maps (Axiom 1.2.8). |

THEOREM 1.3.8 (The triple theorem) Let (F, F>,F3) be an Mg -triple.

a) Assume F, K-null.

ai1) 03, Ki(F2/F3) — Kiy1(F3) is a group isomorphism.
az) &3;=013;0Ki(@12/F3).
az) @13 is K-null.

as) If we put ®; == Ki(@12/F3) 0 (823;) " then

Ki(v13) KN
0 — Ki(F\) —— K/(F/F) &0 Kit1(F3) —0

is a split exact sequence and the map
Ki(Fi) x Kit1(F3) — Ki(F1/F3), (a,b) — Ki(y13)a+Pib
is a group isomorphism.
b) Assume F\/F; K-null.

b1) &3, =0 and the sequence

Ki(yn3)

Ki(923) “5 K (R/F3) — 0

0 — K;(F3) 5 K (F)

is exact.
by) Ki(@13): Ki(F3) — Ki(F1) is a group isomorphism.

bs) If we put ®; := K,-((p173)_1 o Ki(@12) then the map
Y K,‘(Fz) — K,‘(F3) X Ki(F2/F3) , br— (q)ib,Ki(lllzg)b)
is a group isomorphism.
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1.3 Some Elementary Results

ba) If w12 is K-null and if we put @ := K;(¢2 3) oK,-((Pl,B)_1 then

Ki(912)
E—

K,'(Fz) @ Ki(Fl) —0

814 1)

0— Kir1(Fi/F) ——
is a split exact sequence and the map
Ki(F1) X Kiy1(Fi /) — Ki(F),  (a,b) — ®ja+ 8 5, (141)b
is a group isomorphism.
¢) Assume Fy K-null and denote by  the canonical map Fi/F; — Fy /F>.

c1) 012, and 0y 3 ; are group isomorphisms.

c2) Ki(923) 0613 (ix1) = 612,(i41) © Kiv 1 (W)
c3) Let ¢ : Fy/F, — Fy/F3 be a morphism in Mg such that

Ki(yoo) =idyr /r,) -

If we put

®; = 8 3 (1) 0 Kir1(9) 0 (812, 141)) !

then Ki(@23) o ®; = idk,(r,)- If in addition v 3 is K-null then

Ki(923)

B, ) e Ki(Fs) — 0

0— Kit1(R/F;) ——
is a split exact sequence and the map
Kit1(F2/F3) X Ki(F2) — Ki(F3),  (a,b) = 833 iy 1ya+ Pib

is a group isomorphism.

a) follows from Proposition 1.3.6 b).

a) follows from Proposition 1.3.7 b).

az) @ 3 factorizes through null and so it is K-null.
a4) By ap),

813,0®; =813 0Ki(912/F3)0(823,) ' = &3:0(83) ' = idk,(ry)
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Chapter 1 The Axiomatic Theory

and this implies the assertion.

b1) By Proposition 1.3.7 b), &, 3; factorizes through null and so it is K-null

six-term axiom (Axiom 1.2.7) the sequence

is

Ki((PZ,S) Ki(va3)

— Ki (Fz)

00— K,' (F3)
exact.

by) follows from Proposition 1.3.6 a).

bs3) Step 1
;0 Ki(¢23) = idg,(ry)

Since @13 = Q120 P23,
D;0Ki(¢23) = Ki(913) ' o Ki(@12) 0 Ki(923) =
=Ki(¢13) ' o Ki(@13) = idy,r) -
Step 2 ¥ is injective
Let b € K;(F>) with b = 0. Then K;(y23)b = 0o by by),

b € KerKi(yz3) =ImK;(¢23)

and there is an a € K;(F3) with b = K;(¢23)a. By Step 1,

a= CD,'K,'((ng)a =$b=0,

so b =0 and ¥ is injective.

18

Step 3 W is surjective

Let (a,c) € Ki(F3) X K;(F2/F3). Putb' := Ki(¢23)a. By by),

Ki(y23)b' = Ki(y23)Ki(¢23)a =0

— Ki (Fz/F3) —0

. By the
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1.4 Tensor Products

and by Step 1, ®;b' = ®;K;(¢23)a =a. By by), there is a b” € K;(F>) with ¢ = K;(y2,3)b".
By Step 1,

q)i(b// — Ki((ng)q)ib”) = q)ib// — CI>,'K,‘((P213)CI)ib// = q)ib// — q)ib// =0.

Thus by by),
lP(b/ + b — Ki(([)z_rg)q)ib//) =

= (Pt Ki(y23)b" — Ki(v23)Ki(92,3)Pib") = (a,¢)

and W is surjective.
bs) Since @13 = @120 ¢ 3,
Ki(912) o®} = Ki(¢12) oKi(¢23) oKi(13) ' =

=Ki(¢13)0Ki(¢13) ' = idg, (Fy)

and the assertion follows.
c1) follows from Proposition 1.3.6 b)).

cy) follows from the commutativity of the index maps (Axiom 1.2.8).
c3) By 2),
Ki(23) 0@ = Ki(923) 001 3 (i41) 0 Kit 1 (@) 0 (81 2,3i51)) =
=85 i1y o Kir1 (W) oKip1(9) o (810,41)) ' =
=012 (i+1) o Kit1(yop)o (51,2,(i+1))_1 =01 ,(i41)© (61,2.(i+1))_1 =idg,(p) -

The last assertion follows from the first one. [ |

Remark. a) still holds with the weaker assumption that F, is only an E-C*-subalgebra
of Fj 1.

1.4 Tensor Products

Throughout this section F' denotes an E-C*-algebra.
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Chapter 1 The Axiomatic Theory

DEFINITION 1.4.1 Let G be a C*-algebra. We denote by F ® G the spatial tensor
product of F and G endowed with the structure of an E-C*-algebra by using the exterior
multiplication

Ex(F®RG)—F®G, (a,xy)— (ox)®y

(I5] Proposition T.5.14 and T.5.17 Remark). If F > F’ is a morphism in Mg and G % G'
a morphism in Mg then F G PN ® G’ denotes the morphism in Mg defined by

PRV FRG—F G, x@y— 0xQyy.

If (Gj) jes is a family of C*-algebras then we put

®Gj =C.

Jj€o
We have F @ C ~ F and idp ® idg = idpgg. If F ANy i) F" are morphisms in
Mg and G Ael L G” are morphisms in M¢ then
(paw)o(9'ay)=(pog )@ (yoy).
If G and H are C*-algebras then
FR(GxH)~(FRG)x (F®H), F®(GoH)~ (FRG)®H .
If G is a C*-algebra and Fj, F> are E-C*-algebras then

(i xKh)G~=(Fi®G)x (FRRG).
PROPOSITION 1.4.2 Let G,H be C*-algebras.

a) If o, @1 : G— H are homotopic C*-homomorphisms then idr @ @y and idr @ @

are also homotopic.
b) IfG LA H, H Y Gisa homotopy in Mg then
FoG"Yron, FoH“YFoG

is a homotopy in Mg .

c) If G is homotopic to O then F ® G is also homotopic to 0 and so K-null.
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1.4 Tensor Products

a) Let [0, 1] — ¢ be a pointwise continuous map of C*-homomorphisms G — H. Let
z € F®G. There are finite families (x;) je; in F and (y;) jes in G such that

= ij®yj.
jel
For s € [0,1],
(idr @ @5)z= ij®q)syj
jed
so the map

0,1 — F®H, s+ (idr @ @y)z

is continuous.

Letnow z € F®G, so € [0,1], and € > 0. There is a2’ € F © G such that ||z — 2| < §.
By the above, there is a § > 0 such that

|| (idr ® @5)2' — (idF @ @5,)7 || < g
forall s € [0,1], |s —so| < 8. It follows
[(idp @ ¢s)z— (idr @ @sy)z|| < || (idr @ @5)(z—2)|| +

+ || (idr ® @)2 — (idr @ @52 || + || (idr ® @5,) (2 = 2) || < €,

which proves the assertion.
b) follows from a).

¢) follows from b) and Proposition 1.3.5 c)). |

PROPOSITION 1.4.3 Let
[ ¥,
0—>G1 —)Gz(LG3 —0

be a split exact sequence in M.

a) The sequence in Mg

idr oo idp @y
0—FRG ———F®Gy idpoh FRGy;—0

is split exact.
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Chapter 1 The Axiomatic Theory

b) The sequence

Ki(idr 29) Lildpov)
00— K[(F ® G]) _— K,'(F@Gz) Kidpor) Ki(F ® G3) —0

is split exact and the map
Ki(F ®G1) x Ki(F ® G3) — Ki(F ® G2),
(a,b) — K,'(idF ® (P)Cl+Ki(idF ®},)b

is a group isomorphism.

a) By [5] Corollary T.5.19, idr ® ¢ is injective. We have
(idrp @ y)o (idp @A) =idr @ (Yo L) = idr ®idg, = idrgc,

(idr @ y) o (idp 0 @) = idr @ (Yo 9) =0,
S0
Im (idr @ @) C Ker (idr Q y) .

Let z € (F ® G) NKer (idp ® y). There is a linearly independent finite family (x;) jcs
in F and a family (y;) je; in G2 such that

z= ij RYj -
jeJ
From

0=(idr@Y)z=Y x; @Yy,
jel

we get yy; = 0 for all j € J. Thus for every j € J there is a y’j € G with (py’j =y;. It
follows

z= ij®q)y/j = (idr ® @) ij®y} eIm(idr @ @) .
= jeJ
Let z € Ker (idr ® y). Then
(idr @ (A o))z = (idr @A) (idp @ W)z =0.
Let (z,)nen be a sequence in F' © G, converging to z. For n € IN, by the above,

(idr © ) (20 — (idp © (A 0 Y))zn) =
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= (idr @Y)zy — (idr @ W) (idr @ L) (idr @ W)z, =
= (idr @ Y)zu — (idr @ Y)z, = 0,
Zn—(idp@Aoy))z, €Im(idr Q) .

Since Im (idr ® @) is closed,
<=2~ (idp ® (Ao y))z = lim (3,  (idr @ (X0 ))z,) € Im(idr & 9)

which proves the Proposition.

b) follows from a) and the split exact axiom (Axiom 1.2.3). [ |

DEFINITION 1.4.4

We denote for every C*-algebra G by G its unitization (see e.g. [4] Exercise 1.3) and by
[ 7¢] =, E&
0—G—G Ao C—0

its associated split exact sequence. If G and H are C*-algebras and ¢ : G — H is a
C*-homomorphism then ¢ : G — H denotes the unitization of @.

COROLLARY 1.4.5 Let G be a C*-algebra.

a) The sequence in Mg

. » id]:éivri>
0 FOG T F &6 aporg F — 0
is split exact.
b) The sequence
. K;(idp@mng)
K;(id, ~ ——————
0— Ki(F©G) %, K (F©.G) tupor) KilF) —0

is split exact and the map
Ki(F)xKi(F®G) — K; (F®G) ,
(a,b) — K; (idr @ Ag) a+ K; (idp @ 16) b

is a group isomorphism.

Science Publishing Group 23



Chapter 1 The Axiomatic Theory

¢) Let F % F' be a morphism in Mg and G ~ G' a morphism in Me. If we identify
the isomorphic groups of b) then

Ki(p® V) K (F®G6) — K (F @G),
(@,0) — (Ki(@)a,Ki(p @ y)b)
is a group isomorphism.

d) Let ¢ : G — G’ be a morphism in Mc. If we denote by ¥; and ¥} the group

isomorphisms of b) associated to G and G', respectively, then

K; (idp © @) o ¥; = Wi o (idy,p) X K; (idp @ 9)) .

a) and b) follow from Proposition 1.4.3 a),b).

c) follows from b) and the commutativity of the following diagram:

idp®1 idp @A,
G G

F®G FoG F®U

<P®llfl <P®V7l l(l’@idc

FFoG —— FFeG +—— F'oC
idpr @15 idpr @Ag

d) For (a,b) € K; (F) x K; (F ® G), since oAg =Ag and 1o @ = Po1g,
K;(idr ® ) ¥i(a,b) = K; (idr ® ¢) (K; (idr ® Ag) a+ K; (idr ® 1) b) =
= K; (idr ® Q) K; (idr @ Ag) a+K; (idr @ @) K; (idr @16)b =
= Ki (idr ® (poAg))a+K;(idr @ (Poig))b =
=K;(idp @ Ag)a+K; (idp @ (10 @)) b=
=K;(idr ® Agr) a+K; (idp @15 ) K; (idp @ ) b =
=¥i(a,K; (idr @ ¢) b) = ¥i(idk,r) x K; (idr @ 9))(a,b),
SO

K; (idp@(f))o\yi :‘P;o (idKl»(F) XK,'(idF®§0)) . |
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1.4 Tensor Products

PROPOSITION 1.4.6 If (G;)je; is a finite family of C*-algebras then

(- (29) - (o)

We prove the assertion by induction with respect to Card J. The assertion is trivial for
CardJ = 0 (Definition 1.4.1 and Null-axiom (Axiom 1.4.6)). Let jo € J, J' :=J\ {jo},
and assume the assertion holds for J’. By Corollary 1.4.5 b),

K,~<F®<®G,)>z[(i Fo Q)G
jeJ jes

~K|Fo | QG| | xK| |Feo QG| |G|~
jeJ' jeJ’

~Ki|Fo | QG| | xKi | (FG)o | QG| |~
jeJ' jeJ'

Q

zHKi<F®<®Gj>>><HKi Fo| & G

iy Jjel iy jelu{jo}

1 (ro (@), .

COROLLARY 14.7 If G is a C*-algebra then for all n € IN*

w(ro(@a))-fix(ee(ge) - m

PROPOSITION 1.4.8 Let G be a C*-algebra and
o -0
0— F —>F2<LF3 —0
a split exact sequence in Mg .
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a) The sequence in Mg

oRidg 7W®idi>
0—FRGC—">FKHRG rcig 3G —0

is split exact.

b) The sequence

K;(p®idg) Milywidg) |
0 —K(Fi®G) ——= Ki(F,®G) Kilhsidg) Ki(Fs®G) —0

is split exact and the map
K,’(F] X G) X Ki(F3 X G) — K,‘(Fg X G) R

(a,b) — Kl((P ® idg)a+Ki()L ® id(;)b

is a group isomorphism.
The proof is similar to the proof of Proposition 1.4.3. [

PROPOSITION 1.4.9 Let
0— Gy LGZLG:; —0

be an exact sequence in M. If F or G3 is nuclear then the sequence in Mg

05 FoG T FoG, Y FoGy—0
is exact and so FoG G
®6 ~F® 22 .
F®G, G
[5] Theorem T.6.26. [ |

PROPOSITION 1.4.10 Let G be a C*-algebra and
0—F-5R 2R 0

an exact sequence in Mg. If F3 or G is nuclear then

¢1 ®id(; ¢2®idG

0—FA®G KRG B®G—0

is exact.
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[5] Theorem T.6.26. [ |

DEFINITION 1.4.11 Let

0—F2h 2 E 0

be an exact sequence in Mg and G a C*-algebra. If 8; denotes the index maps associated
to the above exact sequence in Mg and if the sequence in Mg

01 ®idg $r®idg

0—F®G — F®G — FBG—0

is exact (e.g. F3 or G is nuclear ([5] T.6.26)) then we denote by 8¢, the index maps

associated to this last exact sequence in Mg .

In this case the six-term sequence

Ko(¢1®idg) Ko (92 ®idg)

Ko(F1 ®G) Ko(F,®G) ———= Ko(F3®G)

06,1 T J5G.0

K](F3®G) — K](FZ@G) — K](F]@G)
K1 ($2®idg) K1 (¢1®idg)

is exact (by the six-term axiom (Axiom 1.2.7)).

COROLLARY 1.4.12 Let G be a unital C*-algebra,
0— F ﬂ>F2£>F3—>0

an exact sequence in Mg, and J; its index maps. We assume that Fs or G is nuclear and
put for every j € {1,2,3}
Q0 Fj—F;®G, x—x®lg.

Then 5G,iOKi ((p3) = I{H-l ((Pl) o 6,'.

The diagram
R s B -2, R
%l %l l%
FFRG — hRG —— KRG
91 ®idg $Ridg
is commutative and the assertion follows from Proposition 1.4.10 and the commutativity
of the index maps (Axiom 1.2.8). [ |
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1.5 TheClass ¥

Throughout this section F' denotes an E-C*-algebra.

DEFINITION 1.5.1 Let Y be the class of those C*-algebras G for which there are
p(G),q(G) € IN* and group isomorphisms

q)i,G,F : I(, (F)p<G) X K,'+1 (F)q(G> — K,’ (F ® G)

such that for every morphism F g F' in Mg the diagram

D6 r

K (F)"9 x Kipy (F)"9 —25 K(F®G)
Ki(9)P© xmmmml lm(mm@

Ki(F)" ) x iy ()19 ——— Ki(F'©G)
PiGF

is commutative. We denote by G the class of group isomorphisms
@i r 1 Ki(F)"'? x Kisy (F)!'©) — K (F 2 G)

having the above property. A C*-algebra G is called Y-null if G € Y and p(G) = ¢(G) =
0.

If G is T-null or if F is K-null and G € Y then F ® G is K-null. In general we shall use
D, . without writing {®; g r} € G.

PROPOSITION 1.5.2 Let p.q € IN* and let A be the class of group isomorphisms
Aip 1 Ki (F)" x Kis1 (F)" — K; (F) x K1 (F)?

such that for all morphisms F E) F' in Mg the diagram

A,
K (F)P x Koy (F) — K;(F)" x Kiy1 (F)

Kiwvxmwl lK,-w) <Ko (0
Ki (F)? x Kit1 (F')! —— K;i(9)” x Kiy1 ()7

A pr

is commutative. Let G € Y with p(G) = p, q(G) = q, and let {®; G r} € G.
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1.5 The Class Y
a) If Air € A and if we put
ioF = PicroNir: Ki($)" x Kiy1(9)! — Ki(F®G)
then {®@ ; p} € G.
b) If {®;r}e€ G and if we put
Aip =D po®@ g r Ki(9) x Kip1 (0)! — Ki (9)P x Kij1 (9)7
then {A;ir} € A

) If {Air},{A[ g} € Athen {Aipo Az} € A {Af} €A |

DEFINITION 1.5.3 We denote for every nuclear G € Y by Gy the class of exact
sequences in Mg

00— F ﬂ)Fz ﬂ)F},—)O
such that if &; denote its index maps then the diagram

DiG.Fy

Ki (F3)"'9 x Ky (F3) 19 Ki(F;®G)

(G G .
p )Xéﬂl% lac‘,

Kit1 (Fl)p(G> X K; (Fl)q(G> — Kiyg (Fl ®G)
Q(i11).6.F

is commutative.
If G is Y-null then every exact sequence in g belongs to Gy.

PROPOSITION 1.5.4

a) 0is Y-null
b) CeT, p(C) =1, q(C) =0, q)i,CA,F = K,‘(d)[j’F), where
ocrp:F—FxC, x—x®Ig.

Every exact sequence in Mg belongs to Cy.
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¢) Let G2+ G, G -5 G be a homotopy in M. If G € Y then
GeY, pG)=pG), q(G)=4q(G),
D¢ =Ki(idp@@)oPiGF .
If in addition G and G' are nuclear then Gy = G..

d) If G is null-homotopic then G is Y-null.

a) By the null-axiom (Axiom 1.2.2), 0 is Y-null.

b) The first assertion is easy to see. The second one follows from the commutativity of
the index maps (Axiom 1.2.8).

¢) By Proposition 1.4.2 b),

FoG " roc, Fed"Yrec

is a homotopy in Mg . By Proposition 1.3.7 a),
Ki(idr @ 9): K; (F®G) — K; (F®G') ,
Ki(idr @) :K; (F®G) — K; (F®G)
are group isomorphisms and K; (idp @ w) = K; (idp @ ¢)~'. Thus
Ki(idr @ 9) o®i 6 5 Ki (F)"'9 x Ky (F)'9) — K; (F© G)

is a group isomorphism. If F g F’ is a morphism in 91 then the diagram

Ki(F)"9 s Ky (F)O) 295, g (Pog) HUrEe)

Ki(F®G)
lKi((p)P(G)XKHl(q))q(G) lKi(q)@idg) Ki(¢®idGI)J,

K (F)"9 x Ky (F)"Y) —— K(F ®G) —— K(F'@G)
(I)L,G‘F/ Ki(idF/®(p)

is commutative and the first assertion follows.
Assume now that G and G’ are nuclear, let

0—F ﬂ)Fz &1‘3 — 0) € Gy,
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1.5 The Class Y

and let §; be its associated index maps. By the commutativity of the index maps (Axiom
1.2.8 a)) the diagram

51’(0) x 6‘1(0)

Ki (F5)"9 x Ky (F3) 19— Ky (R)" x K (F)"©)
(I)i,G,F3J lq)([-%—l).G‘F]

K (F3®G) 5—> Kit1(Fi®G)
Gi
K,(idp3 ®¢)l lKiﬂ (idr, ®0)
K (F30G) 6—> K1 (F1RG)
G i

is commutative. Since the maps of the columns are group isomorphisms, it follows by the

above, that the diagram

87 509

Ki (F3)") x Ko (B)"0) = Ko (F)"D) K (R

@6/ Fy l JV(D(HI),G’.FI

K (F32G) — K1 (F®G)

is also commutative.

d) follows from a) and c). [ |

PROPOSITION 1.5.5 Let G be a nuclear C*-algebra belonging to Y.

a) Every split exact sequence in Mg belongs to Gy.
b) Every exact sequence in Mg
0O—F —Fh—F—0
for which Fy or F3 is homotopic to O belongs to Gy .
a) Let
0—F 2B F—0
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be a split exact sequence in g and let §; be its index maps. By Proposition 1.4.8 a),

PRidg y®idg
0—FRGC—">FKHRG rsig 3G —0

is split exact and so by Proposition 1.3.1, §; = 85, = 0.

b) By Proposition 1.4.2 ¢), F1 ® G or F3 ® G is null-homotopic and so K-null. Thus
by the six-term axiom (Axiom 1.2.7), §; = 8¢; = 0, where &; denote the index maps
associated to

0—F —F—F—0. |

PROPOSITION 1.5.6 Let

0—G 26,56, —0

be an exact sequence in Mg such that Gs is nuclear.

a) Assume Gy is Y-null.
a1) K;i(idrp @) : K; (F @ G2) — K; (F ® G3) is a group isomorphism.
ap) If Gy € Y or G3 €Y then
G2,G3 €Y, p(G)=p(G3),  q(G2)=4q(G3),
D6, r = Ki(idrp @ W) oDig, F .
If in addition G, is nuclear then (Gy)y = (G3)y-

b) Assume Gy is Y-null and let 6,»F denote the index maps of the exact sequence in Mg

id id
P PGy Y F oGy — 0.

00— FRG

by) 8F : Ki(F ® G3) — Kiy1 (F ® Gy) is a group isomorphism.
by) If Gy € Y or G3 €Y then

G1,G3 €, p(G1) = q(G3), q(G1) = p(G3),

F
DGy r = Piy1),6,F00 -

c) Assume G3 is Y-null.
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c1) Ki(idrp, @ @) : K; (F®G) — K; (F ® Gy) is a group isomorphism.
) ]fG1 €Y or Gy €Y then
G1,G €Y,  p(G)=p(G), q(Gi)=4q(G),

D, r=Ki(idr@@)o®iG, r.
If in addition G| and Gy are nuclear then (G1)y = (G2)y-

By Proposition 1.4.9 a), the sequence in Mg

id, id,
G0 oGy, Y F oGy — 0

00— FRG

is exact. If G; is Y-null then F ® G; is K-null so a;),b1),c;) follow from Proposition
1.3.6 a).b).

ay) By ay), it is easy to see that
G2,Gs€Y,  p(G)=p(G3),  q(G2)=q(G3),

DGy r =Ki(idrp @Y)oDig, F -

Assume now G; nuclear. Let
91 [}
0—F—>Fh->5F—0

belong to (G )y or (G3)y and let §; be its associated index maps. Consider the diagram

G Gy & xsl G G
Ki (F3)P( 2) X Ki+l (F3)Q( 2) ! ! s Ki+1 (Fl)l’( 2) X Ki (F1)4< 2)

@i G, ,py l lq’(wl).Gz,F]
0G, i
K; (F3®Gy) Kit1 (Fi®G2)
K;(idp, @ v) l le (idr, @w)
K; (F3®G3) - Kit1 (Fi®Gs)
Gyi
@iGy.Fy T T‘I’(Hl)gyﬁl
K (F3)"C) x Ky ()70 — 5 Ky (F)PC) x K (7)1
87193 50678
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Its upper part or lower part is commutative and the maps of the columns are group
isomorphisms. It follows, by the above, that the diagram is commutative. Thus
(G2)r = (G3)r.

by) Let F g F’ be a morphism in g . Then the diagram
0 K (F®G)) Ki(idr@9) Ki(F©G») K;(idp V)
Ki(9id, )l ll(,-(«t@idcz)
0 — K(FFeG) — KK(F' 9G) ——
K;i(idpr @) Ki(idp@w)
Ki(idrp@@) Ki(F®G) Ki(idr@y) Ki(F©Gs) 0
Ki(¢®id62)l J/K,‘((P@idcj‘)
—— > K(F'®G) —— Ki(FF®Gy)) —— 0
Ki(idp©9) Ki(idpy)

is commutative and has exact rows. By the commutativity of the index maps (Axiom
1.2.8), the diagram

sF
Ki(F®G3) —— Kip1 (F®Gy)

k,-(¢®idcg)l lK,«H(q)@idal)

Ki(F,®G3) — Ki (F'@G])
5F'

i

is commutative. By by),
G,G:eY,  p(Gi)=4q(G3), q(Gi)=p(Gs),

D g3, F = P(i11),6,,F ° 5.

¢2) The proof is similar to the proof of ay). |

PROPOSITION 1.5.7 Let
? A
0— G —>G2<LG3 —0

be a split exact sequence in M.
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a) If G1,G3 € X then

GyeT, p(G2) = p(G1) + p(Gs), q(G2) = q(G1) +4q(G3),
D; 6,.F = (Ki (idr @ @) X K; (idr @ 1)) o (P G,,F X PGy F) -

b) If in addition G1,Ga,and G are nuclear then (G1)y N (G3)y C (G2)y-

a) By Proposition 1.4.3 b), the sequence

K;(id, Ki(idp @)
0— K (F®G)) M) K;(F®G,) &iaper) Ki(F®G3) — 0

<L

is split exact. Thus the maps

(Ki (F)P(Gl) X Kiq1 (F)Q(Gl)) ™ (Ki (F)P(G3) x Kij1 (F)Q(G3)>

DGy, F*XPi Gy F

Ky (F©Gy) x Ki (F & Gy) K;(idp@@) X K; (idp @)

Ki (F ®G2)

are group isomorphisms.

Let F L F’ be a morphism in 9 . Since the diagram with split exact rows

idrp @@ M,
0—F®RG ———F®G, dp @A F®RGs —0,

. idp @y
d1 @ _F
0— F 0G — F'©Gy upen F'©Gs — 0,

(Proposition 1.4.3 a)) and with columns ¢ ® idg,, ¢ ®idg,, and ¢ ®idg, is commutative,
the assertion follows from Proposition 1.4.3 b).

b) Let

(0—>F1 ﬂ>Fz £F3 —>0) S (Gl)rﬁ(G3)T
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and let &; be its associated index maps. Consider the diagram (by a))

5’17(02) X5q(02)

K; (F3)1J(Gz) x Kis 1 (F3)q(Gz) U N Kii (Fl)p(Gz) % K; (Fl)q(Gz)

D, 6,7, X PiGy 1y l @(i11),6,,Fy XP(i+1),G5,Fy l
Ki(F3®G1) XK (F3®G3) ﬁ Kiy1 (Fl®Gy) x Kiy1 (F1 ®G3)
G1,iX0G3.i
Al Ki+1(idF1®¢)><Ki+1(idFl ®l)l
Ki (F3®Gy) - Kit1 (Fi®G2)
Gy i

@Gy 1y T T¢(f+l)7Gz.F1

§P(G2) | 54(G2)
Ki ()P s Ky (P70 22000 g (1)P(9) K ()@

where
A:=K; (idr, ® 9) x K; (idp, ® 1) .

Its upper part is commutative and the maps of the columns are group isomorphisms. It

follows that the lower part of the diagram is also commutative.

COROLLARY 1.58 IfGe Y then G €Y, p(G) = p(G)+1, q(G) = q(G). If in addition

G and G are nuclear then Gy C Gy.

PROPOSITION 1.5.9 Let (Gj)jes be a finite family in Y.

a)
G=[]Gex, p(G)=YpG), 4aG)=) 4(G)),
jer jer jel
Digr = (Hq’zc F) (F&G)) jesi -
JjeJ

In particular if G; is Y-null for every j € J then G is Y-null.

b) Ifin addition G and all G}, j € J, are nuclear then

((Gj)x C G .

jel
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c) T eX, p(T) = CardJ, q(T’) =0, and every exact sequence in Mg belongs to

(©)y-
a) We put
p= ZP(G]')v q:= ZCI(G/)
jeJ =Y
Since
Folle~[IFeG))),
jes jes

by Proposition 1.3.3, the maps

[1®ic,.r : Ki (F)” x Kit1 (F)? —H(K ) % Kisy (F)q(Gj)) —
JjeJ jeJ
(D(FXG )jE./I

— I_Ilz;(F‘QQ(;j)
ier

K;(F®G)

are group isomorphisms. Let F g F' be a morphism in Mg . The diagram

I;IJ‘D,G F
p q J
K; (F)? x Ky (F)? _HJK,-(F@G]»)
JE
K,~<¢J'§x1<,-+1<¢>ﬂ 1K i(ovidg,)

K (F') x Ky (F)! ——— 1K (F'®G))
_l;[jq)i.Gj,F’ JjeJ
J

is obviously commutative and by Proposition 1.3.4 the diagram

q)(F,G')' i
MK (FoG) —% K(FoG)
jer
JIE]]K,' (‘P@id(;j) l lKiW@idc)
[k (F®G) — K(F'®G)
jes P(F'6)) jeyi

is also commutative and this proves the assertion.
b) follows from Proposition 1.5.7 by complete induction.

c) follows from a), b), and Proposition 1.5.4 b). [ |
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PROPOSITION 1.5.10 Let J be a finite set and for every j € J let
0 —>ij1 &Fj; ﬂ>Fj’3 —0
be an exact sequence in Mg and §;; its associated index maps. For every k € {1,2,3} put

Fk = HFj,k
jel
and for every j € J denote by
ik Fjr — Fi, Yk Fe— Fjx

the canonical inclusion and projection, respectively. Then
e 1w
0— F RN F2/—> F—0

is an exact sequence in Mg and if we denote by &; its index maps then the diagram

W3
I ki (F3) —= Ki(F)
je

S
jl;[J - l J{&'

1 Kit1 (Fj1) — K1 (F)
jeJ Wi i+1)

is commutative, where for every k € {1,3},

Yei: [1Ki (Fix) — Ki(F) 5 (a))jer — Y Ki(@jx)a; -
jeJ jeJ

For every j € J the diagram

A2 Vi

0 Eji Fjo Fjs 0
(Pj,ll (Pj,zl l(Pj,S
0 F] F2 F3 07
I1 ¢; I1 v;
jeJ jeJ

is commutative. By the commutativity of the index maps (Axiom 1.2.8), the diagram

K; (Fj3) m K; (F3)

5,,{ lﬁ,-

Kiy1 (Fji) —— Kip1 (F)
Ki+|(<P_/,1)
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is commutative. Let (a;)je; € T K; (F,3) Then
jes

5‘1’2,(6” jel = 52[( (pj3 a; =
jeJ

= ZK1+] @;, 1)5_] idj = IP1 (i+1) <H5jl> a] Jjel -

jeJ jeJ
Thus the diagram

[1 K (F;3) D, K; (F3)
jeJ

i
Bl s

1 Ki+1 (Fj1) —— Kiv1 (F)
jeJ Wi i+1)

is commutative. [ |

PROPOSITION 1.5.11 Let (G|)jcs be a finite family in Y.

a)

G:=Q)G,eT,
jeJ

p(G)= % <H(P(Gj) +4(G))+]](p(G)) _‘I(Gj))> :

JjeJ jeJ
q(G) = % (H(p(Gj) +4q(Gj)) — H(p(G,) - q(Gj))>
JE Jj€E

b) If Gj, is K-null for a jo € J then F ® <® Gj> is also K-null.
jeJ
¢) If p(Gj,) = 4(Gjo) for a jo € J then p(G) = 4(G).

d) Let joe J, J :=J\ {jo}, and G := @ G,.

jet
d) If p(Gjy) = 1,4(Gj,) = 0 then p(G') = p(G), q(G') = q(G).
) If p(Gjy) = 0,4(Gj,) = 1 then p(G') = q(G), q(G') = p(G).
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e) If we put

H::®Gj and Gy ::®Gj

jel jel
for every I C J then

HeY, pH)=Y pG), qH)=Y q4(G):.
1cJ 1cJ

/) If in addition G and all (G|) jej are nuclear then

()(Gj)x CGr.
jer
a) Assume first J = {1,2}. The maps
K; (F)P(Gl)P(G2)+q(Gl)q(Gz) x Ki i1 (F)p(Gl)q(Gz)er(Gz)q(Gl) _

p(Ga) 9(G2)

— (Ki (F)P(Gl) X Kit1 (F)q(Gl)) « (Ki+l (F)I’(Gl) x K; (F)Q(Gl)> N

(®;,6,.r)P 02 x (P(i11).6, F)16)

— K; (F®G1)p(02) X Kii1 (F(X)G])q(GZ) —
D G,,FeG,
— K (F®G1)®G) = K; (F® (G ®G,))

are group isomorphisms and
p(G1®G2) := p(G1)p(G2) +4q(G1)q(G2) =
= %[(p(Gl) +4(G1))(p(G2) +4(G2)) + (p(G1) — q(G1))(p(G2) — q(G2))],
q(G1®Ga) := p(G1)q(G2) + p(G2)q(G1) =

= S [((G) +4(G1)) (p(G2) +4(G2)) — (p(G1) —a(G1)) (p(G2) ~a(Ga))].

ItF g F’ is a morphism in Mg then the diagrams

<I:'i, J(F&
Ki(F® G x Ky (F2 G )10 2200 p(F@G) @ Gs)
lk,-((b@idgl )79 xkipi (oidg, )" lKi((¢®idcl )@idg, )

K; (F,®G1)p(G2) X Kit1 (F/(X)Gl)q(GZ) _— Ki((F/®Gl) ®G2)

<I>i,G2,(F’®G| )
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K (F®RG)®G) —— K (F®(G1®G))
lK"((“?@"dGl)@idGz) lKi(‘P@"d(Gm@Gz))
Ki((F'®G1)®Gy) —— Ki(F'©(G1®G))

are commutative, which proves the assertion in this case.

The general case is obtained now by induction with respect to CardJ. Let CardJ > 1,
ke, J :=J\{k},G := ® jeyGj and assume the assertion holds for J'. By the above,

p(G) = %[(P(Gl) +4(G)(p(Gi) +4(Gr)) + (p(G) — 4(G)) (p(Gr) —4(Gr))] =

= (H(P(Gj) +4q(G;))(p(Gx) +q(Gx))+

jeJ'

+[1((G)) —a(G))(p(Gr) — (J(Gk))> =

jel’
- % (I]J(p(Gj)+q(Gj)) +H(p(Gj) —q(Gj))> ,
JE Jje
4(6) = 3 (p(G) +a(GN(P(Ge) +a(Ge) — (P(G) (G (p(G) — a(G)] =

= (H(P(Gj) +4q(G)))(p(Gx) +4(Gr))—

jeJ'

~[1(r(G) —a(G))(p(Gr) - Q(Gk))> =

jeJ'
_ % (H(P(Gj)+q(Gj)) —Il(p(G,)—q(Gj))> .
JE Jje

b), ¢), and d) follow directly from a).
e) By Corollary 1.5.8, Gj € Y for every j € J. By a) and Proposition 1.4.6, H € Y,

K (F®H) =~ HKi (F®Gy) =~ H (Ki (F)P(Gl) x Kit1 (F)q(Gl)) —
IcJ icJ
Y p(Gi) T 9(Gr)
=Ki(F)<  XKp (F)< .
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f) Assume first J := {1,2}, let

(0—>F1 ﬂ>F2 ﬂ)Fﬁ —>0> S (G])TQ(GQ)T,

and let &; be its index maps. Then (by a)) the diagram

(G) (G)
»(G) 4(G) L
K (F5)) x Koo () UL
p(Gy) 7(G3) p(Gy) 7(G3)
¢’i~Gl%F3 Xq’(fﬂz),clfg, l ¢(i+12),61 F Xq’i,Gﬁ,Fl l

5P 54(G2)

Ki(F©G)"%) x Ky (BeG)!% L2, p
<I>,'.62,(F3®cl)l ¢<i+1>-Gz~(F1®Gl)l
K(F®G)®G6G) =K (e (GI®6G) — C

BGI A(Go,i)

is commutative, where
A= Ki1 (RO x K (R)"

B:=Kii1 (R ©G)"%) x K; (F ©G,)*) |
C:=Kiy1 ((F®G1)®Gy)) =K1 (F®(G1®G))) -

Thus
(O—)Flﬂ)Fgﬂ)F3—>0)EGr.

The general case follows by induction with respect to Card J. |

COROLLARY 1512 Let Ge Y, n € N, and H := ® jeN,G. Then H € Y, Gy C Hy,

and
plH) = 3 (p(G) +4(G))' + (p(G) ~4(G))")
q(H) = %((p(G) +4(G))" = (p(G) —4(G))") .
The assertion follows from Proposition 1.5.11 a). [

PROPOSITION 1.5.13 Let (Gy,Gz,G3) be an Mg -triple such that G1/G3 and G, /G3
are nuclear, Gy is Y-null, and G1,G3 € Y. We use the notation of the triple theorem
(Theorem 1.3.8 a)) associated to the Mg -triple

(F®G1,F®G27F®G3)
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(Proposition 1.4.9), put ¢ := @y »/(F ® G3) (as in Proposition 1.3.7 a)), and denote by
Wr,: Ki(F®G1) X Kiy1 (F®G3) — K (F®(G1/G3)),
(a, b) — K; (l[/173) a+d;b
the corresponding group isomorphism (Theorem 1.3.8 ay), Proposition 1.4.9). Then

G1/G3z €T, p(G1/G3) = p(G1) +q(G3), q(G1/G3) = q(G1) + p(G3),

D (6,/G3),F = YFio (PigGF X Pit1),6y.F) -

Since G1,G3 € Y, the map
Wrio(Pig F X Pi1).65.F) (Ki (F)"V x Kip (F)q(G‘)) X

x(Kis1 (F)P%) x K ()" @) ) — Ki(F ©(G1/Gy))

is a group isomorphism. We put

p(G1/G3) == p(G1) + Q(G3), 4(G1/G3) == q(G1) + p(Gs),

cI’i,G]/G3,F i=Wr;o(®ig,F ¥ q)(i+1)7Gz,F) :

LetF g F’ be amorphism in Mg . We mark with a prime the above notation associated

to F’. By the commutativity of the index maps (Axiom 1.2.8),

Kin1 (¢ ® idG3) 083, = 52/737,' oK; ((P ® id(Gz/G3)) .

Moreover
Ki (¢ ®id(g, /Gy)) o Ki (9) = Ki (¢) o Ki (¢ ®id(g,/G4)) »

Ki (9 ®id(G, /Gy) o Ki(w13) = Ki (W1 3) o K (¢ @idg, ) .

1t follows
Ki (¢ ®id(g, /6;)) o ®i = Ki (9 @id(G, /) 0 Ki (@) 0 (83:) ' =

= Ki ((p/) OKi (¢ ® ld<G2/G3)) ° (5273"")71 =

= Ki (¢')0(853,) " oKip1 (9 ®idg,) = PjoKiy1 (9 ®idg) -
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We want to prove that the diagram

Wri
Ki(F®G)) xKiy1 (F®G3) —— Ki(F®(G1/G3))

Ki(¢widg, ) xKir1 (9®idg, )J lKi (¢®id(cl/c3))
Ki(F/(X)Gl) X Kit1 (F/®G3) ‘P—> K; (F/®(G1/G3))

F'i

is commutative. For (a,b) € K; (F ® G1) x Ki+1 (F ® G3), by the above,

Ki (¢ ®id(G, /Gy)) Yri(a,b) = K; (¢ @id(g, /6,)) (Ki (w13) a+DP;b)
=Ki (0 ®id(G, /Gy) Ki(W1.3)a+Ki (9 ®id (G, /Gy)) Pib =
=K; (v13)Ki (9 ®idg, ) a+ DKy (¢ @idg,) b=
=YW i(Ki (9 ®idg, ) a,Kir1 (9 ®idg,) b) =
=W¥p (Ki (¢ ®idg,) x Kir1 (9 ®1idg,))(a,b) .
Thus the above diagram is commutative. It follows, since G1,G3 € Y, that the diagram

Pi(G,/Gy).F
IR

K; (F)P(GI/GS) x Kip 1 (F)Q(GI/GS) K (F® (GI/GS))

Ki(9)"(C1/G3) kK, (¢)q(01/03)l lK,- (¢®id(cl/03)>

Ki ()" Ko (F)" O ———— Ki(F'©(G1/Gs))

;. (6,/63).F

is commutative. Hence
Gi1/Gs €Y,  p(Gi/G3)=p(G1)+q(G3),  q(G1/G3)=4q(G1)+p(G3),
D (6,/G3).,F = YFio(PiG F X Pit1)65F) - u
PROPOSITION 1.5.14 Let (G1,G2,G3) be an Mg -triple such that G, /G, and G /G3

are nuclear, G1/Gs is Y-null, and G1,G1/Gy € Y. We use the notation of the triple
theorem (Theorem 1.3.8 b)) associated to the Mg -triple

(F®G,F®Gy,F®G3)
(Proposition 1.4.9), assume Wi, K-null for all E-C*-algebras F, and denote by

Wri: Ki(F®G1) xKit1 (F®(G1/Ga)) — Ki(F®Gr),
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(a,b) — Pla+ 85 (i11)b

the corresponding group isomorphism (Theorem 1.3.8 b4), Proposition 1.4.9). Then
G€Y,  p(G2)=p(G1)+4q(Gi/G2),  q(G2) =q(G1)+p(Gi/Ga),

DG, r = Vrio(PiG,.F X Pis1),(6,/Go).F) -

Since G1,G1 /G, € Y, the map
Pri© (B, X D) (61/o)) ¢ (Ki(F) O x Kis ()79 )

% (Ki+1 (F)P©1/G) « k; (F)q(Gl/Gz)) S K (F®G,)

is a group isomorphism. We put
p(G2) := p(G1) +4(G1/Gr), 4(G2) :=q(G1) + p(G1/Ga),

D, 6, r:=Yrio(Pig rx Di11),(G,/Ga) F) -

Let F g F be a morphism in 9z . We mark with a bar the above notation associated

to F. By the commutativity of the index maps (Axiom 1.2.8),

Ki (9 ®idG,) 082 i41) = S1.2,(i+1) 0 Kir1 (9 ®id (G, /6,)) -
Moreover
Ki (¢ ®idg,) oKi(@13) = Ki (¢13) oKi (¢ ®idg, ) ,
Ki (9 ®idG,) o Ki(¢23) = Ki (¢23) o K; (9 ®idg, ) -

It follows
Ki (¢ ®idg,) o®} = K; (¢ ®idg,) o K; (¢23) o Ki (¢13) ' =

=Ki(¢23) 0K; (p ®idg,) o Ki (¢13) ' =
=K (P23) oKi (@13) ' oKi (¢ ®idg,) = P}oK; (¢ ®idg,) .

We want to prove that the diagram
Wi
Ki(F®G)) x Kiy1 (F®(G1/G2)) —— Ki(F®G))

Ki((])@idG] )XK,‘+1 (¢®id(cl/02))l J{Ki(¢®id02)
Ki(F®Gi) x Kiv1 (F®(G1/Ga)) S K (F ®G»)

F.i
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is commutative. For (a,b) € K; (F ® G1) X Ki1+1 (F ® (G1/G2)), by the above,
Ki (¢ ®idg,)¥ri(a,b) = Ki (¢ ®idg,) (Pia+ 8 i11)b) =

= K; (¢ ®idg,) Pia+Ki (¢ ®idg,) 8 5 (i+1)b =
= ®K; (9 ®idg,)a+ 85,1 Kiv1 (9 ©id(6,/6,)) b=
=W ,(Ki (¢ ®idg,)a,Kir1 (¢ @idg, 6,)) b) =
=V, (Ki(¢ @idg,) x Kip1 (9 ®id(g, j6,))) (a,b) .
Thus the above diagram is commutative. Since G1,G|/G> € Y, It follows that the diagram
K (F)"9) x K,y (F)YI(@) 290, g (p oGy
KKWPWﬂxm+w¢W“ﬁl lKK¢®Mc»

Ki (F)ﬁ(62> % Ki+1 (F')Q(GZ) SN Ki (F‘@Gz)

@G, F

is commutative. Hence
Gy €, p(G2) = p(G1) +4q(G1/G), q(G2) = q(G1) + p(G1/G2),

D6, r =Yrio(PiG, F X Pis1),(6,/6).F) - u

PROPOSITION 1.5.15 Let
? 4
0—G—H—C—0

be an exact sequence in Mg with G nuclear and H Y-null and let 8F denote the index

maps associated to the exact sequence in Mg

0—FRG I pog Y r 0.

Then
GeT, p(G) =0, q(G) =1, q’i,G,F:éf )

i+1

FoH idr@y

F—0)eGy.
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By Proposition 1.5.6 b) and Proposition 1.5.4 b),

GeT, p(G) =0,
Since the diagram
8k
Kip(F) ——
®iGr=5{,, l

q(G)=1,  D;;p_sr

i+l ’

Ki(F ®G)

J(q>(i+l).G,(F®G):6(I;J

Ki(F©G) —— Kii((F®G)©G)

G,i

is obviously commutative,

idp@¢Q

idpRy

0—F®G———F®H——F —0)€Gy. |

1.6 The Class 1

Throughout this section F' denotes an E-C*-algebra.

DEFINITION 1.6.1 We denote by Y| the class of unital C*-algebras G belonging to Y

such that

where
¢G,F F—FRG,

PROPOSITION 1.6.2 C e Y;.
In fact

bvr:F —FaC,

is an isomorphism.

D 6r =Ki(9cF) ,

X—x®1g.

x—x® 1

PROPOSITION 1.6.3 Let G € Y| and let F f) F' be a morphism in M. If we identify
K; (F) with K; (F ® G) for all E-C*-algebras F using the group isomorphisms ®; g r then

K; (¢ ®idg) is identified with K; ().
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The assertion follows from the commutativity of the diagram

K(F) S k()
‘bi‘G,Fl l‘bi,G,F’ [ |
K,(F@G) E— Ki(F/®G)
Ki(¢®idg)

PROPOSITION 1.6.4 Let G,H be C*-algebrasand ¢ : G — H and y : H — G be a
homotopy such that ¢ and y are unital. If G € Y| then H € Y.

By Proposition 1.5.4 ¢),
HeY, pH)=1, q(H)=0,

Dy r=Ki(idr @ Q) o®ir=K;(idr @ Q)oK; (96 r) =Ki(¢nr) . |

PROPOSITION 1.6.5 If (G;) je; is a finite family in Xy, J # 0, then @ G; € Y.
jeJ

& G; is unital and by Proposition 1.5.12 a), ® G; € Y. Assume J = {1,2} and let
jeJ JjeJ

F g) F’ be a morphism in Mg . Then the diagram

Ki(q)Gl‘F) K; (¢62~(F®Gl)>

K (F) Ki (F®G)
Ki<¢)J/ le‘(‘P@idcl ) lKi (‘P@id(clxcz))
Ki(F) —— K(F ®G) —— K(F @G, ®G,)
(96, (96, r1ea1))

K (FRGIQG,)

is commutative. Since

0(G126,).F = 96,,(FeG)) O P61.F»  9G06y).F = 96, (F'ec) © 96, F
the diagram
Kil 9 A,
M Ki(F® G ®G,)

K;~<¢>l lKi (¢®"d<61®62>)

Ki(F) ———— K(F G ®G,)
K; (‘I’(cl@@),p’
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is commutative, which proves the assertion in this case. The general case follows now by

induction with respect to Card J. |

PROPOSITION 1.6.6 If G € Y| is nuclear then every exact sequence in Mg belongs to
Gy.

Let

0—F 2R 2 E -0

be an exact sequence in 21z . Then the diagram

O—>F1L>F2L>F3—>O

96.r, l 96,7, l ld’c.@

0 — I®G — KhRG — KRG —— 0
O Qidg P Ridg

is commutative and has exact rows. By the commutativity of the index maps (Axiom
1.2.8) the diagram
S
Ki(F3) ——  Ki(F)

@Gy :Ki(ﬂ’G,F})l J/(D(HI)‘G,Fl =Ki+1(96,r,)

Ki(F3®G) 5—> Kip1(F1 ®G)
G,i

is commutative, where 6; denotes the index maps of the exact sequence

0—>F1LF2£>F3—>0. |
PROPOSITION 1.6.7 Let G be a C*-algebra.

a) ¢ p = (idr @A) o ¢c F.
b) Gis Y-null iff G € Y.

¢) If Gis Y-null and ¢ : G — G, v : G — G’ are C*-homomorphisms then
K; (idr ® ) = K; (idr @ W). In particular if G = G' then

K; (idr ® (P) = idK,v(F®G~) ~ idKl-(F) .
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a) is easy to see.

b) By Corollary 1.4.5 b), the sequence

Ki(idy _ k,»(idFmGL
0— Ki(F©G) - k. (F ©.G) puarorg) Ki(F) —0

is split exact. By a) and Proposition 1.6.2,
K; (¢G,F) = K; (idr ® Ag) o @i F -

If G € Y; then
@ sr=Ki (‘PG,F) =K; (idr ® Ag) o Pirr

so by Proposition 1.6.2, K; (idr ® Ag) is an isomorphism, K; (idr @ 15) =0, K; (F® G) =
0, and G is Y-null. If G is Y-null then K; (idr ® A¢) is an isomorphism so

Ki(0.r) : Ki(F) — Ki(F 2 )
is an isomorphism and G € Y.
¢) Since PoAg = Yo g,
K; (idr ® @) o K; (idr ® Ag) = K; (idp © W) o K; (idp ® Ag) -
By b), G € Y| and so K; (idr ® Ag) is an isomorphism. Thus K; (idr ® ¢) = K; (idr @ ).

COROLLARY 1.6.8 If (Gj) ey is a finite family of Y-null C*-algebras and G := [] G;
jeJ
then G € Y.

By Proposition 1.5.9 a), G is Y-null and by Proposition 1.6.7 b), G € Y. |

PROPOSITION 1.6.9 Let
¢ 14
0—G —G,—G;—0

be an exact sequence in Mg such that G is Y-null, G3 is nuclear, and G,, G3 are unital.
Then G, € Y1 iff Gz € Y.
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Since G and Gj3 are unital and  is surjective, y(1g,) = lg,. It follows
0G;,r = (idr @ W) o G, F, Ki (06,,r) = Ki (idr @ W) 0 K; (96, F) -
By Proposition 1.5.6 a), K; (idr ® ) is a group isomorphism,
G,GieY,  p(G)=p(G3)=1, q(G2)=4q(G3)=0,

DGy r =Ki(idrp @Y)oDig, F -
If G, € Y then by the above,

®; 6,.r = K; (idr @ W) o K; (96,.r) = Ki (96,.F) ,
so G3 € T1. If G3 € T then by the above,
K; (idr ® W) o Ki (96,,7) = Ki (96,.F) = PiGy.r = Ki (idp @ W) 0D, F

SO ¢isGZ)F :Ki(‘PGz,F) and G, € Y. [ |
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2.1 Tietze’s Theorem

2.1 Tietze’s Theorem

DEFINITION 2.1.1 Let Q be a topological space and F an E-C*-algebra. We endow
canonically the C*-algebra € (Q,F) with the structure of an E-C*-algebra by putting

ox:Q—F, o+ ax(o)

Sorall (a,x) € E X F. If Q is a locally compact space then we endow 6y (Q, F) with the
structure of on E—C x —algebra in a similar way. If Q' is an open set of a locally compact
space Q then we identify 6y (Q', F) with the E-ideal { x € 6y (Q,F) | x|(Q\ Q') =0} of
%o (Q,F).
DEFINITION 2.1.2 Let Q be a locally compact space with €, (Q,C) € Y. We put
QeY, p(Q):=p(6R0), q(Q):=q(% (L)),
(I)iig.’p = q)i,%)o(Q,C),F7 Qy = %0 (.Q,C)T s Qe — Cgo (Q,C) eYy.

We say that Q is Y-null if 6, (Q,C) is Y-null. We say that Q is null-homotopic if
%o (Q,T) is null-homotopic.

PROPOSITION 2.1.3 IfQ is a locally compact space and if Q* denotes its Alexandroff
compactification then Q is Y-null iff Q* € Y.

The Proposition is a particular case of Proposition 1.6.7. |

LEMMA 2.1.4 Let Q be a locally compact space.

a) €o(Q,TC) is nuclear.
b) € (Q,F)~F®%,(Q,T).

¢) If Q is a finite compact space then Q € X, p(Q) = CardQ, q(Q) = 0, and every

exact sequence in Mg belongs to Qy.
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a) [5] Theorem T.6.20.
b) [5] Proposition T.5.11,
¢) follows from Proposition 1.5.9 c). |
COROLLARY 2.1.5 (Tietze’s Theorem) Let Q be a locally compact space, I a closed
set of Q, @ : 6o (Q\T',F) — 60 (Q, F) the inclusion map, and
v:%6 (QF)— % ([,F), x—x|T.

Then
0— % (Q\L,F) -5 % (Q,F) 5 % (T,F) — 0

is an exact sequence in Mg .
By Lemma 2.1.4 a),b), the assertion follows from Proposition 1.4.9. [ |

COROLLARY 2.1.6 If
0— F &FQ%F:; —0

is an exact sequence in Mg and Q a locally compact space then

01 ®idg $Ridg

0— % (Q,F) —— %0 (Q,F) ——= % (Q,F3) — 0

is an exact sequence in Mg .

By Lemma 2.1.4 a),b), the assertion follows from Proposition 1.4.10. [ |

PROPOSITION 2.1.7 Let
0—F 2R 2 E -0

be an exact sequence in Mg, Q a locally compact space, I" a closed set of Q,
0 : % (Q\T',C) — % (Q,T) the inclusion map, and

v % (QC)— 6 ((I,C), x—xT.
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a) G:={x€6 (QF)|xUeé (T,F)} is a closed E-ideal of 6y(Q,F); we
denote by ¢’ : G — 6o (Q, ) the inclusion map.

b) The sequence in Mg

0—G l) %o (Q,Fz) ﬁ% %o (F,F3) —0

is exact.

a) is easy to see.
b) We put
G] = %0 (Q\F,C) s G2 = Cgo (Q,C) s G3 = %0(11[3) .

Let us consider the following commutative diagram.

0 0 0
¢1®id(;1 ¢2®id(;l
0O — I®G — heG —— KRG ——— 0
idpl®(pl idp2®§0l idp3®(Pl

(g} ®id(;2 ¢2®idc2
0 — ARG, — KhRG, — G, —— 0
idFl®Wl idF2®WJ( idp3®|ﬂ/l

o] ®id63 [053 ®idG~5
0 —— I®RGy — hRGy — Gy —— 0

! | !

0 0 0

By Lemma 2.1.4 a), Proposition 1.4.9, and Proposition 1.4.10, its columns and rows are

exact. It follows that ¢, ® y is surjective. Let x € Ker (¢, ® y). Then
(idp, ® y)($2 ®idg,)x = (@ ¥)x =0,
so there is ay € F, ® G with
(2@ @)y = (idr, ® 9)($2 @idg, )y = ($2 ®idg, )x -
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Then
(2 ®idg,)(x — (idr, @ @)y) = (2 ®idg,)x — (2@ @)y =0,

so there is a z € F] ® G, with
(1 ® idGz)Z =X= (isz @Q)y.
Thus

x:(idp2®(p)y+(¢1®id(;2)z€G, Ker(¢2®l[/)CG.

Let now x € G. By Proposition 1.4.9, thereisay € 6, (Q,F;) = F| ® Gy withx|T = y|I.
Thereisaz € 6o (Q\I',F>) = F» ® G| with

(idp, ® @)z =x— (¢ ®idg,)y -

We get
(ry)x= (@ V) (1 Qidg,)y+ (¢ @ W) (idp, @ @)z =

=((g200)@Y)y+ (@ (yog))z=0,
G CKer(g@wy). [ |

Remark. If we put F; := 0 and F> = F3 in the above Proposition then we obtain Tietze’s
Theorem (Corollary 2.1.5).
PROPOSITION 2.1.8 (Topological six-term sequence) Let Q be a locally compact
space, I a closed set of Q, @ : 6o (Q\I',F) — 6o (Q, F) the inclusion map,
v: % (QF)—%([,F), x—x|T,

and &; the index maps associated to the exact sequence in Mg (Tietze’s Theorem
(Corollary 2.1.5))

0 — % (Q\T,F) -2 % (. F) -5 % (T,F) — 0.

a) Assume Q\T is Y-null.

a1) Ki(y) : Ki(6o (Q,F)) — Ki(6o (I, F)) is a group isomorphism.
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ay) IfQeYorl €Y then
QreY, p@)=pI), q&)=4I),
Sirr=Ki(idp@y)odiar, Qr=TIy.
b) Assume Q is Y-null.

by) 6 :Ki(6o(I',F)) — Kiy1(%0 (Q\T,F)) is a group isomorphism.
by) FQ\T €Y orTe Y then

Q\I'TeY, pQ\IN=4qI), q(Q\I')=pI),
@;rr=P(it1),@\)F°0 -
c) Assume I is Y-null.

c1) Ki() : Ki(%o (Q\T',F)) — Ki(60 (Q,F)) is a group isomorphism.
c2) IFQ\T €Y or Q €X then

Q\ILQeY, pQ\I)=pQ), qQ\TI)=4q(Q),

;0 r =K (idr @ ) o®; (o\) F » (Q@\Dy=Qr.
The assertions follow from Lemma 2.1.4 a),b) and Proposition 1.5.6. [ |

COROLLARY 2.1.9 Let Q be a locally compact space, ® € Q such that Q\ {®} is
Y-null, T a closed set of Q,
Q':=(@\{o})\I', TI':=T\{o},
Q:6 (Y, F) — 6 (Q\ {0}, F) the inclusion map,
V6 (Q\{w},F) — % (I',F), xr—x|l’,
and 6; the index maps of the exact sequence in Mg (Tietze’s Theorem (Corollary 2.1.5))

0— % (Q,F) L %@\ {0},F) %5 % (I',F) —0.

a) 6 :Ki(¢y(I",F)) — Kir1 (60 (Q,F)) is a group isomorphism.
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b) If Q' €Y orI” €Y then
QIr'eY, p@)=qT), q@)=pT),
D =Py Fobi.
c) IfT is finite then

Q e, p(Q)=0, q(Q') = CardT" .

a) and b) follow from the Topological six-term sequence (Proposition 2.1.8 b)).
¢) follows from b) and Lemma 2.1.4 ¢). |

COROLLARY 2.1.10 Let Q,Q' be locally compact spaces, ® € Q, and @' € Q' such
that Q'\ { @'} is null-homotopic.

a) Ki(% (@ x Q) \{(0,0")},F)) = K; (40 (Q\{0}) x Q' F)) .

b) If also Q\ {®@} is null-homotopic then 6y ((Q x Q) \ {(w, @)}, F) is K-null.

a) The sequence in Mg (with obvious notation)
0— %o ((Q\{w}) X QQF) LN %o ((Q X Q’)\{(w,w’)},F)

% (Qx )\ {(0,0)},F) 2 € ({0} x (' \ {0'}),F) — 0

is exact and the assertion follows from the Topological six-term sequence (Proposition
2.1.8 ¢c1)).

b) By Proposition 1.4.2 ¢) and Lemma 2.1.4 b), (Q\ {®}) x Q' is null-homotopic and
so K-null (Proposition 1.5.4 a)). By a),

Ki (% (@x Q) \{(0,0)},F))

is K-null. [ |
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PROPOSITION 2.1.11 (Topological triple) Let Q| be a locally compact space, Q; an
open set of Q1, Q3 an open set of Qp, and @ : €y (L \ Q3,F) — 6o (Q1\ Q3,F) the
inclusion map. For all j,k € {1,2,3}, j <k, put

l[/j,klcgo(QﬁF) —><50(Qj\.Qk,F) s x»—>x|(Qj\Q.k)

and denote by Q; : 6o (., F) — 60 (Q;,F) the inclusion map and by §; . ; the index

maps associated to the exact sequence in Mg

0— G (. F) 25 6 (9, F) 225 6 (Q,\ @, F) — 0.

a) Assume 6o (Qo,F) K-null.
ai) 53,1 Ki(6o(Q0\Q3,F)) — Kit1(60 (Q3,F)) is a group isomorphism.
az) 03, = 0613,0Ki(9).
az) @13 is K-null.
as) If we put ;.= K;(¢)o (62’331-)’1 then

Ki(y13) A
0 — Ki(%0 (Q1,F)) ——— Ki(%0 (21 \ Q3,F)) o,

813,
o Kin1(6(Q3,F)) —0

is a split exact sequence and the map
Ki(%0 (Q1,F)) x Kis1 (€0 (Q3,F)) — Ki(6o (21 \ Q3,F)),

(Cl, b) — K,’(l[/l_g)a + ;b
is a group isomorphism.

as) If Qp is Y-null and Q1,Q3 € Y then
Q\Q; €Y, p(Q1\Q3) = p(Q1) +q(Q3), q(Q1\Q3) = q(Q1) +p(Qs3),
and (with the notation of Proposition 1.5.13)
D; (0\05).F = VYrio(Pig, r X Pit1)0,F) -

b) Assume 6o (1 \ Q3,F) K-null.
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by) 63,;=0.
by) Ki(@13): Ki(60(Q3,F)) — Ki(60 (Q1,F)) is a group isomorphism.
b3) If we put ®; := K;(¢13) "' o Ki(¢12) then the map
Y Ki(60(Q,F)) — Ki(60(Q3,F)) x Ki(6p (2 \ Q3,F)),
br— (b, Ki(y23)b)
is a group isomorphism.
bs) If w12 is K-null and if we put @, := Ki(¢23) o Ki(¢1 3) " (by ¢2)) then

Ki(912)

810 —
0 — Kis1(%o (1 \ @2, F)) —22 Ki(%0 (0, F)) L

Ki(912)

o Ki(%o(Q4,F)) — 0

is a split exact sequence and the map
Ki(%0 (Q1,F)) X Kiy1(%0 (1 \ Q2, F)) — Ki(€o (2, F)),

(Cl, b) — dbfa + 51,2,(i+1)b
is a group isomorphism.

bs) If Qi \ Q3 is Y-null, Q1,Q1\ Qs €Y, and 1 5 is K-null then
Q €T, p(Q2) = p(Q1) +q(Q1\Q2), ¢(Q2) = g(Q1) + p(Q1\ Q2) -
¢) Assume 6o (Q1,F) K-null and put
V6 (Qi\Q3,F) — 6o (Q\Q,F), x—x|(21\Q2).

c1) 012, and Oy 3; are group isomorphisms.

c2) Ki(923) 083, 3i+1) = 612,(i+1) o Kir1 (W)
c3) Let @' : 65 (Q1\ Q2, F) — 60 (1 \ Q3,F) be a morphism in Mg such that

K,'(l;/o (P/) = idKi(%(Ql\QLF)) :

If we put
®; := 8y 3 1+1) 0 Kir1(9") 0 (81 2, (141))
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then Ki(¢23) o ®; = idy, 4, (q,,r))- If in addition v 3 is K-null then

52‘3.(i+l) Ki(923)
O—>Ki+1(<50(92\93,F))ﬁ>Ki(<go(Q3’F)) o

Ki(923)
o Ki(6o(Q,F)) —0

is a split exact sequence and the map
Kir1((¢0(Q22\ Q3,F)) X Ki(60 (Q2,F)) — Ki(%0(Q3,F))
(a,b) — 833 iy 1ya+ Pib
is a group isomorphism.
Up to as) and bs) the Proposition follows from Tietze’s Theorem (Corollary 2.1.5)

and from the triple theorem (Theorem 1.3.8) (and Lemma 2.1.4 a),b)). as) follows from
Proposition 1.5.13 and bs) follows from Proposition 1.5.14. |

COROLLARY 2.1.12 Let F E) F' be a morphism in Mg. We use the notation and
hypotheses of Proposition 2.1.11 and the hypothesis that 6 (Qa,F) and 6y (Q2,F') are
K-null, and mark with an accent those notation associated to F'. We put for all j €
{1,2,3} and for all j,k € {1,2,3}, j <k,

06 (Qj,F) — %o (Qj,F') , x—>@ox,

oy :Cfo(ﬂj\gk,F) — % (Qj\Qk,F/) , X+—@ox.

a) DioKir1(¢3) = Ki(¢13) 0P

b) If we identify Ki(€o(Q1\Q3,F)) with Ki(€o(Q1,F)) x Kit1(%0(Q3,F)) and
K,'(cgo (Q \Q3,F’)) with  K;(6o (Ql,F/)) x Ki1(%o (Q3,F’)) using  the
isomorphisms of Proposition 2.1.11 a4) then

K,’((P]‘g) : Ki(cgo (.Ql \Q3,F)) — K,’((fo (Q1 \.Q.3,F/)),
(a,b) — (Ki(91)a, Kiv1(¢3)b)

is a group isomorphism.
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a) The diagram

0—><50(Q3,F) L (fo(QQ,F) L %0(92\93,F)—>0

[ e [

O—)“/fo(Qg,F/)) — %0(9.27}7/) —_— %0(92\93,1’_‘/) —0
(P£13 Wé,.?

is obviously commutative and has exact rows. By the commutativity of the index maps
(Axiom 1.2.8),

Kit1(93) 083 = (823,) oKi($23),
((823.)) " 0 Kip1(93) = Ki($23) 0 (823,) " .

By the above, since ¢130¢ = @' o ¢ 3,
Ki(913) 0@ = Ki(913) o Ki(9) 0 (823,) ' = Ki(@') o Ki(h23) 0 (823,) ' =

—Ki(9)0 ((8:3:)) " o Kip1(¢3) = D} 0 Kiv1(93) .

b) follows from a) and Proposition 2.1.11 ay). [ |

2.2 Alexandroff Compactification

THEOREM 2.2.1 (Alexandroff K-theorem) Let Q be a locally compact space and QF
its Alexandroff compactification. We denote by

(1 (50 (QvF) — %(Q*vF)
the inclusion map and put

A:F—C(QF), yr—ylga

a) The map
Ki(6 (Q,F)) xK{(F) — Ki(€ (Q*,F)), (a,b)— Ki(@)a+K;(A)b

is a group isomorphism.
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b) If Q €Y then

Q' eY, pQ)=pQ)+1, ¢Q)=4(Q) QrcQr.

c) Qis Y-null iff Q* € Y.

% (Q*,T) is the unitization of %) (Q,T).
a) Since
% (Q,F)~F®% (Q,0), 6 (Q" F) =~ FR% (Q°,0)
(Lemma 2.1.4 b)), the assertion follows from Corollary 1.4.5 b).
b) follows from Corollary 1.5.8.
c) follows from Proposition 1.6.7 b). [ |
COROLLARY 2.2.2 Let Qi and €y be locally compact spaces, Qf, Q3 their

Alexandroff compactification, respectively, ¥ : Q1 —> Qj a proper continuous map,

9" : Q7 — Q3 its continuous extension, and
¢:%0(927F)—>(g0(915F)7 x'—>x007
9" C (. F) — C(Q,F), x——x09".
a) If we identify K; (‘5 (Q;‘,F)) with Ki(6o (Q},F)) x Ki(F) for every j € {1,2}

using the group isomorphisms of the Alexandroff K-theorem (Theorem 2.2.1 a))
then

Ki(¢7) - Ki(C (@, F)) — Ki(6(Q1,F)),  (a,b) — (Ki(9)a,b) .

b) Let ¥ : Q) — Q be a proper continuous map and let ¢', ™ be the above maps
associated to ©'. If Q is Y-null then K; (idr ® 0*) = K; (idp @ ¢'*). In particular
ifQ] = Q) then

K0l ') = g 0.1
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a) follows from Corollary 1.4.5 c).

b) follows from Proposition 1.6.7 c). |
COROLLARY 2.2.3 Let F g F' be a morphism in Mg. We use the notation of the
Alexandroff K-theorem (Theorem 2.2.1) and put

0q : 60 (L F) — % (Q,F/) , x—¢ox,

Po 1 € (QF) —><€(Q*,F') , Xx—>¢ox.

If we identify K;(€ (Q* F)) with Ki(6o(Q,F)) x Ki(F) and K;(€ (Q*,F')) with
Ki(6o (Q,F")) x Ki(F') using the group isomorphism of the Alexandroff K-theorem
(Theorem 2.2.1 a)) then

Ki(9o+) : Ki(€ (", F)) — K; (¢ (", F')), (a,b) — (Ki(¢a)a,Ki(9)b) .

The assertion follows from Corollary 1.4.5 c). |
COROLLARY 2.2.4 We use the notation of the Alexandroff K-theorem (Theorem 2.2.1
a)) and denote by .. the Alexandroff point of Q. Let Q' be a locally compact space,

qD/ 160 (Q X .Q./,F) — %0 (Q* X Q/,F)
the inclusion map, and
A% (Q/,F) — %0 (Q* XQ/,F) , XX,

where

:Q0'xQ —F, (0,0)—x(o).
Then the map
K; (60 (Qx Q' F)) x Ki(F) — K; (¢ (Q* x @', F)),
(a,b) — Ki(@")a+ Ki(A")b

is a group isomorphism.
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If we put
Vv 6 (QxQ F) — 6 (QF), x— x(0,)
then
/ v
0— G (Qx QY F) 5 6 (Q xQF) 2/ 6 (Q.F) —0

is a split exact sequence in Mz and the assertion follows from the split exact axiom
(Axiom 1.2.3). [ |

2.3 Topological Sums of Locally Compact Spaces

PROPOSITION 2.3.1 (Product Theorem) Let (Q2});e; be a finite family of locally
compact spaces, K its topological sum, and for every j € J let
Q60 (Q),F) — €0 (Q,F) be the inclusion map and

l[lji%o(Q,F) —><€0(QJ’,F), xl—>x|Qj.

a)

P : in(% (Q),F)) — Ki(€o (R F)), (aj)jes — Z}Ki(‘l’j)“j
JE je

is a group isomorphism and

¥ Ki(6o (QF)) — [[Ki(%0 (Q),F)), ar— (Ki(y))a)jes
jed

is its inverse.

b) Ifall Qj, j € J, belong to Y then

QeY, p@Q)= Z}p(gj)v q(Q) = Z]CI(Q.f>a

Dior =[P r, ((Qj)r C Qr.
jel jeJ

c) If Qj is Y-null for every j € J then Q is also Y-null and Q* € Y1, where Q* denotes
the Alexandroff compactification of €.

Science Publishing Group 67



Chapter 2 Locally Compact Spaces

a) follows from Proposition 1.3.3.
b) follows from Proposition 1.5.9.

¢) By b), Q is Y-null and by Alexandroff’s K-theorem (Theorem 2.2.1 a)), Q* < Y;. H

COROLLARY 2.3.2 Let Q be a locally compact space, I a closed set of Q, and () jes
a finite family of pairwise disjoint open sets of Q such that |J Q; = Q\T. We denote for
jel
every j €J by @;: 6y (Q;,F) — 6o (Q,F) the inclusion map and assume that the maps
Ki(@)) : Ki(¢0 (), F)) — Ki(%0 (2, F))

are group isomorphisms. If ¢ : 6o (Q\I',F) — %o (Q, F) denotes the inclusion map and
if we identify the above groups then Ki(%o (Q\T',F)) ~ K;(6y (Q,F))’ and

Ki(9) : Ki(6o (Q\T,F)) — Ki(¢0 (Q,F)), (a))jes — Y. a;. o
jer

COROLLARY 2.3.3 Let Q be a locally compact space such that 6 (Q, F) is K-null and
I" a closed set of Q.

a) Ki(o (Q\T,F)) = K11 (% (I',F)) .
b) Assume T finite and Q Y-null, put
v 6 (QF)—%(I,F), x—x|T,

and denote by @ : 6o (Q\T',F) — 6, (Q, F) the inclusion map and by §; the index

maps associated to the exact sequence in Mg
0— % (Q\I,F) -2 % (Q,F) 5 ¢(T,F) — 0.

Then
Ki(60(Q\T,F)) ~ Kij1(F)",

Q\I'eY, pQ\I)=0, ¢(Q\I)=Cardl';,  @;o\r)F = i+1-

a) Since %) (Q,F) is K-null, the assertion follows from the six-term axiom (Axiom
1.2.7).

b) follows from a), Lemma 2.1.4 c), and the Product Theorem (Proposition 2.3.1). W
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COROLLARY 2.34 Let (Q))je; be a finite family of locally compact spaces, Q its
topological sum, and Q* the Alexandroff compactification of Q.

a) Ki(¢(Q,F)) ~ ],IETJKi(%(ijF)) , Ki(€/(Q7,F)) ~ Ki(F) X Jle]]Ki(%(QjaF)) :

b) Ifall Q;j, j € J, belong to X then

QeY, pQ)=14+YpQ), qQ)=) q&)).
jer jer

The assertion follows immediately from the Product Theorem (Proposition 2.3.1 a))
and the Alexandroff K-theorem (Theorem 2.2.1 a)). [ |

COROLLARY 2.3.5 Let (Q;) ey be a finite family of locally compact spaces such that
€0 (Q),F) is K-null for every j € J and let T'j be a closed set of Q; for every j € J.
We denote by Q the Alexandroff compactification of the topological sum of the family

(Q\T))jes-

a) K,(%(Q,F)) %K,‘(F) X _HJKiH(CgO (Fj,F)).
j€
b) If for every j € J, Qjis Y-null and T'; is finite then
QeT, p(Q)=1, q(Q):ZCardFj.

jer

a) By Corollary 2.3.3 a), K;(60 (Q;\I'},F)) = Ki+1(%o (I'j, F)) for every j € J so by
Corollary 2.3.4 a),

Ki(€ (Q,F)) = Ki(F) x [ [ Ki+1(%0 (T}, F)) .
jeJ

b) By Corollary 2.3.3 b), for every j € J,
Q\[eY,  p@\I})=0, ¢(Q;\I})=Cardl;.
Thus by Corollary 2.3.4 b),

QeT, p(Q)=1, q(Q):ZCardFj. |

jer
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PROPOSITION 2.3.6 Let Q be a compact space belonging to Y1, I a closed set of Q,
wp €T, and T :=T\ {wy}. We use the notation of the Topological triple (Proposition
2.1.11) and put there

Q:=Q, Q ZZQ\{O)()}, Q3 ZQ\F

a) Q\{wo} is Y-null.
b) Ki(% (Q\T,F)) ~ Kiy 1 (% (I',F).

c)
813,

0 — Ki(% (@, F)) 2, k(4 (0, F)) s,

813,

o Kin1(60(Q\T,F)) — 0
is a split exact sequence, and the maps
Ki(€ (Q,F)) x Ki1(60 (Q\I',F)) — Ki(¢ (L', F)),
(a,b) — Ki(y13)a+®b,
83, Ki (60 (T',F)) — Kit1(%o (Q\T,F))
are group isomorphisms.
d) IfQ\T € Y or I" € Y then with the notation of Corollary 2.1.9
81 Ki (6o (U',F)) — Kis1 (40 (Q\ {@0}, F))
is a group isomorphism and
Q\['T'eY,  pQ\I)=q(), qQ\I)=p(I),
D, o\1).F = Gi+10P(i1) 1 F -
e) Assume I finite.
e1) (8230) 1 Kip1(%0 (Q\T,F)) — Ki(F)T is a group isomorphism.

e) Q\TeY, p@\I)=0, ¢(Q\I)=CardI".
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a) follows from Alexandroff’s K-theorem (Theorem 2.2.1 ¢)).
b) follows from Corollary 2.3.3 a).

¢) By a), Q\ {0} is K-null and the assertion follows from the Topological triple
(Proposition 2.1.11 a)).

d) follows from Corollary 2.1.9.

e1) follows from c) and the Product Theorem (Proposition 2.3.1 ay)).

e3) follows from a) and Corollary 2.1.9 c). |
PROPOSITION 2.3.7 Let Q be a locally compact space, I a closed set of Q,
Q%60 (Q\T',F) — 60 (Q, F) the inclusion map,

v 6 (QF)—%T,F), x—x|[,
and 6; the index maps associated to the exact sequence in Mg
0— % (Q\I,F) -5 4 (Q,F) 5 % (T,F) — 0.

Let (Q}) jes be a finite family of pairwise disjoint open sets of Q the union of which is
Q\T and for every j € J put

l[/](g()(QpF)_)(gO(QJ\QpF)v )CI—))C|(Q]\Q]),
Vi 6o (Q\TLF) — 60 (Q),F),  x+—x[Q;,
y/j’:%(F,F)H%(QJ\QpF)v x> x|(Q;\ Q)

and denote by
Q;: cgo(.Q.j,F) — %0 (.Qj,F) ,

QD}Zfo(Qj,F) — %o (Q\T,F),
(p}lngo(Qj,F) —>C50(Q,F)

the inclusion maps and by 8 ; the index maps associated to the exact sequence in Mg

0—><50(Qj,F) &%0 (QJ’,F) &%0 (Qj\Qj,F) —0.
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a) Forevery jeJ,
5/101((VO) l+1(VG) &

and

8= Y K ()0 8;i0Ki(y)) .
jel

b) Ki(9) = ¥ Ki(¢]) o Ki(y)).

jeJ

¢) Let jo € J such that 6 (Q \Q; ) is K-null.

Jos
c1) Ki(@} ) is a group isomorphism.

cz) Assume Y K-null. If we put
®; = Ki(@}) o Ki(9}y) " : Ki(Go (Q,F)) — Ki(% (Q\T,F))

then
Ki(9)

0 — Ki1 (%o (T, F)) 25 Ki(G (Q\TL,F)) oy

Ki(9)

Ki(%) (9, F)) — 0
is a split exact sequence and the map
Kiy1(6o (T, F)) x Ki(60 (Q,F)) — Ki(¢0 (Q\I',F)),
(a,b) — Sip1a+Pib

is a group isomorphism.

a) By the commutativity of the index maps (Axiom 1.2.8),

8jioKi(w]) =Kiy1(y;) o8 .

Since Y. ¢} oy is the identity map of 65 (Q\T',F),
jeJ

Y K @) 0 8;i0Ki(W] =) Kini( @) oKi1(y))odi=

jeJ jeJ

= K (zw;-ou//j)oa,:

jer
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b) We have ¢ = @ o ¢} for every j € J. Since ¥ @}oyj is the identity map of
jel
%ﬁ(gz\rlfv,

Ki(9) = Ki() o K; (Z @jo vé) =

jer

= Y Ki(9) oKi(9)) o Ki()) = Y Ki(9]) o Ki(y) -

jeJ jeJ

c1) If we put
V%0 (QF) — 60 (Q\Qjy, F) ,  x—2|(Q\ Q)

then

/!

P
0— %o (R, F) - 6 (@, F) -5 %6 (Q\ Q). F) — 0
is an exact sequence in M. Since € (Q\ Qj,,F) is K-null, it follows that Ki(¢j) isa
group isomorphism by the Topological six-term sequence (Proposition 2.1.8 ¢;)).
c2) Since Qo @ = @},
Ki(9) o®; = Ki(@) o Ki(¢)) o Ki(@}) ™' = Ki( @) o Ki( @) ™" = id 508 -
Since y is K-null,
5y Ki(9)
0 — Kit1(%0 (T, F)) == Ki(%60 (Q\T,F)) o Ki(%0(Q,F)) — 0
is a split exact sequence and this implies the last assertion. [
PROPOSITION 2.3.8 If (Q;)jecs, J # 0, is a finite family of compact spaces belonging
to Xy then T[] Q; € Y.

jer

The assertion follows immediately from Proposition 1.6.5. |

2.4 Homotopy

PROPOSITION 2.4.1 Let Q be a locally compact space, QF its Alexandroff
compactification, (193)3,6]071] a family of proper continuous maps  — Q, and for every
5 €]0,1] let BF : Q* — QF be the continuous extension of 5. We assume:

Science Publishing Group 73



Chapter 2 Locally Compact Spaces
1) Q*x]0,1] — Q*, (w,s) — ¥ (w) is continuous,
2) V() = o for every ® € Q,

3) for every compact set T of Q there is an € €]0, 1] with'N J4(Q) = 0 for all s €]0, €].

Then Q is null-homotopic and Q* € Y.

We put for every s € [0,1],

xo®d if s€]0,1]

%0 (Q.C) — % (Q,T)
o5 : 6o (Q,C) — 6o (Q,T) x’—>{0 £ s=0

Then (¢s)se(0,1) is @ pointwise continuous path in 6o (2, T) with ¢o = 0 and ¢; the identity
map of 6y (Q, F). Thus Q is null-homotopic. By Proposition 1.5.4 d), Q is Y-null and by
Alexandroff’s K-theorem, (Theorem 2.2.1 ¢)), Q* € Y. |

COROLLARY 2.4.2 LetJ be a set and Q := [0,1]’. Then Q\ {0} is null-homotopic and
Qe
The assertion follows from Proposition 2.4.1 by using the map
9:Qx[0,1] —Q, (05— so. |
PROPOSITION 2.4.3 Let Q be a locally compact space, I'g,I'y compact subspaces of

Q, 8 :Tp — 'y a homeomorphism, and © : Ty x [0,1] — Q a continuous map such
that ¥(®,0) = ® and ¥ (0, 1) = Fy(w) for every @ € Ty. We put

;. Cg() (Q,F) —><5(Fj,F) N x|—>x\1“j
forevery j € {0,1} and

©: 6T, F)— € (T,F), x—>x0.

a) Ki(@) is a group isomorphism and K;(W) = K;(¢) o K;(y1).
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b) Forevery j € {0,1} let @; : 6o (Q\T'j,F) — 6o (Q,F) be the inclusion map and
A

€ (T}, F) = 6o (Q,F) be a morphism in Mg such that y;oAj = id%(rj F) and
A =Xo @.

by) Forevery j € {0,1},

Ki(@)) Ki(%L
0 — K (60 (Q\Tj,F)) ——— K; (60 (,F)) Ki(%)
Ki(vj)
xi(y) Ki(o (L), F)) —0

is a split exact sequence.
by) ImK;(¢o) =ImK;(¢1).
b3) If we put for every j € {0,1}
)i Ki(€o(Q\T),F)) — ImKi(¢;), a— Ki(¢))a
then ¥ ; and
(lPLi)il O‘P()J 1 K; (Cg() (.Q.\F(),F)) — K; ((g() (.Q\th))
are well-defined group isomorphisms.
by) IfQ\Ty €Y or Q\T'| €Y then
D; \ry)r = (P1) 0Pl 0@ o\r) r -

¢) If Q is compact and if for every j € {0,1} there is a continuous map 191’- :Q— T
such that ¥}(®) = @ for every @ € T'; and By o &) = V| then the hypotheses of b)
are fulfilled.

a) For every s € [0, 1] put

Vo1 o (QF) — € (To,F), x+—x(0(-,s)).

Then K;(vo) = K;(v) by the homotopy axiom (Axiom 1.2.5). K;(¢) is obviously a group
isomorphism. For every x € 6y (Q,F) and w € I'y,

(vox) (@) = x(8(@,0)) = x(0) = (yox) (@),
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(Vix)(@) = x(d(@,1)) = x(%(@)) = (y1x)((®)) = (py1x) (@),
SO Vo = Yy, Vi = QoVyq,

Ki(yo) = Ki(vo) = Ki(vi) = Ki(@) o Ki(y1) -

b follows from the split exact axiom (Axiom 1.2.3).
by) Let j € {0,1}. We want to prove
ImK; (9;) ={ c—Ki (X)) K; (Wj)c | c €Ki (€ (QF)) } .
Leta € K; (6o (Q\T'j,F)) and put ¢ := K; (¢;) a. Then
¢~ Ki(A) K (W) e = Ki(9)a— Ki (M) Ki (w) Ki(9)a = Ki(9)) .,
which proves the ”C “-inclusion. Let ¢ € K; (4 (Q,F)). Then
Ki(y)) (c—Ki(4) Ki (yj)c) =
= Ki (yj) c = Ki (y;) Ki (A)) Ki (wj) ¢ = Ki (yj) ¢ = Ki (yj) ¢ = 0,
¢ —Ki(4)) Ki(y)) c € KerK; (y;) =ImKi(;) ,
which proves the ”2>”-inclusion (by b1)).
Since A; oy = Ago @ o Yy, we get by a),
Ki (M) oKi(y1) = Ki (Ao) o Ki (@) o Ki (y1) = Ki (Ao) o Ki (0) -
Thus, by the above, ImK; (¢o) = ImK; (¢1).
b3) By b1), K; (¢o) and K; (¢ ) are injective, the assertion follows from b;).
by) Let F 4 F'beo morphism in 91g and for every j € {0, 1} put
Wi 6o (Q\Tj,F) — 6o (Q\Tj,F'), x+—¢ox,

W6 (QF) — % (QF), x—¢ox.
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We mark by a prime the notation associated to F when applied to F’. For every j € {0,1}
the diagram
G (Q\T),F) —— 6 (Q\T},F)

o| I

6 (QF) —— 6 (Q,F)
u

is commutative. Thus the diagrams

K (% (@\T),F) s k(g (@)1, 7))

k()| [#te)
Ki (60 (Q,F)) W K;i (60 (Q,F"))
Ki(u;)

Ki (60 (Q\T},F)) — K;i (6 (Q\T},F'))

‘I’./,il J‘I";‘f

ImkK;(¢;)) ——  ImK; (q;;.)

i

are also commutative, where A; is the map defined by K; (i).

Assume Q\ Ty € Y and consider the diagram (by b))

Ki (F)"O0) Koy (F)7@T0) A A
cbi,(Q\FO),Fl J(q)i,(ﬂ\l"o),F/
Ki(G@\To.F)  —H0 k(4 (Q\ o, F)

\PO‘{ l‘%,l‘
ImK; (@p) — ImK; (@)
K(@@\[LF) o K6 @\ )

where
A=K, ((P)P(Q\ro) x Ki1 ((P)‘I(Q\FO)

)

Q\I'p) Q\I'p) )

A=K (F)" V) kg (F)
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By the above, this diagram is commutative and the assertion follows from b3).
c) For every j € {0,1} put
Aj: € (Lj,F) — € (QF), x——x00.
Then yjol; = id‘ﬁ(rj,F) and for every x € € (I'1, F),
Aix =x09 = x0o )= (¢x) o) = Ao(Px), M=Xo@. |

COROLLARY 2.4.4 Let Q be a compact space and ©,®" € Q such that there is a

continuous path in Q from @ to @'

a) Ki(%(Q\{0},F)) ~ Ki (% (Q\ {0}, F)).
b) If Q\{w} €Y then

o\{o'tex, p@\{o'})=p@\{o})., q@\{o})=qQ\{0}).

a) follows from Proposition 2.4.3 b3) and c).

b) follows from Proposition 2.4.3 b,) and c). [ |

COROLLARY 2.4.5 Let Q, Q' be compact spaces such that Q' \ { @'} is null-homotopic
forall ' € Q, 0 € Q, and @" € Q x Q. Then

Ki (%0 (Q\{w},F)) = K; (6o (Q\{0}) xQ F)) ~

~Ki (%0 (Qx '\ {0}, F)) .

Let 0 =: (@, @) € Q x Q. By Corollary 2.1.10 a),
Ki (%0 (Q\{a}) x Q' F)) = K; (60 (@ x @'\ {0"},F))
and by Proposition 2.4.3 ¢),
K (4 (@) {0)) % @.F)) ~ K (6 (@) {o0}) < . F))
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By Proposition 1.4.2 b3),¢),
% ((Q\{0}) x (@ \{@h}).F) ~ % (2 \ {@h}.C) ©% (Q\ {0}, F)
is null-homotopic. Since the sequence in Mg
0— % ((@\ {0}) x 2\ {@h}),F) — % ((Q\ {0}) x 2, F)
% ((Q\ {0}) x U, F) — % ((Q\ {0}) x {@}},F) — 0
is exact it follows from the topological six-term sequence (Proposition 2.1.8 ay)),
K (%o (Q\{0}) x ¥, F)) ~

~Ki (%0 (Q\{o}) x {ap}.F)) = Ki (€0 (Q\ {0}, F)) . u

COROLLARY 2.4.6 Let Q be a locally compact space and oy, € Q and for every

j€{1,2} put
l//jl%o(Q,F) — F, x»—)x(a)j) .

If there is a continuous path in Q from ©; to @, then K; (y) = K; (y).
The assertion follows from Proposition 2.4.3 a). |

COROLLARY 2.4.7 Let Q be a locally compact space, I a finite subset of Q, wy € Q,
and
v 6 (QF)—%(,F), x—x|T,

Va1 60 (QF) — F, x+— x(ay).
If for every @ €T there is a continuous path in Q connecting @y with @ then

Ki(v) : Ki(6o (Q,F)) — K;(€ (T, F)) =~ K;(F)cerl |

ar— (Ki(Way)@) oer -

We put
Vo: 6 (QF)—F, x—x(o)

for every @ € I". By Corollary 2.4.6 , Ki(Wo) = Ki(Wq,) for every @ € I' and the assertion
follows from the Product Theorem (Proposition 2.3.1 a)). [ |
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PROPOSITION 2.4.8 Let Q be a path connected compact space, I a finite subset of Q,
el T :=T\{wn},
0:% (Q\I',F) — % (Q,F),

¢ : % (Q\IF) — % (Q\{},F),
¢":¢ (I',F) — ¢ (I,F)
the inclusion maps,
y:6(QF)—%T,F), x—ux|T,
v 6 (Q\{w},F) — ¢ (I, F), x+—x|I",
Yo:C(QF)—F, x— x(o)
for every ® €T, and §;, 8! the index maps associated to the exact sequences in Mg

0— % (Q\L[,F) -5 ¢(@QF) L% (,F)—0,

0— % (Q\I.F) 25 % (Q\ {an}.F) Y5 % (I',F) — 0.

a) Ki(€ (Q,F)) = Ki(F) x Ki(%0 (Q\ {@}, F)).
b) v is K-null.
c) If we use the group isomorphism of a) then
Ki(w) : Ki(€ (Q,F)) — Ki(¢ (I,F)) < Ki(F)",  (a,b) — (a)oer -
d) If we identify Ki(‘€ (T, F)) with K;(F) and K;(¢ (I, F)) with K;(F)" then
8 :Ki(€ (T,-) — Kit1(%0 (Q\T,),  (ao)wcr — (8 (aw — aa,))wer -
e) Assume €y (Q\ {wy},F) K-null,

e1) Ki(Wa,) : Ki(60 (Q,F)) — Ki(F) is a group isomorphism.
e2) 8 Ki(€¢ (I',F)) — Ki+1(60 (Q\T,F)) is a group isomorphism.
e3) If we identify K;(€ (I, F)) with K;(F)* and K;(¢ (U, F)) with K;(F)' then
Sor all (aw) ger
Ki(¢")(a0)oecr = (do)ocr,

where ag, = 0.
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es) If we identify Ki1 (6o (Q\T,F)) with K;(¢ (I, F)) using (8!)~" of e2) then
Sor all (aco)wel" S K,'(%(F,F)),

5i(aw)a>el’ = (aw - aa)o)wer’ .

a) follows from the Alexandroff K-theorem (Theorem 2.2.1 a)).

b) Let @ € I” and let ¥ : [0,1] — Q be a continuous path in Q connecting © with @y.
Then for every x € 6 (Q\ {@o}, F) the map

[0,1] — 6 (Q\{m},F), x+— x(%())

is continuous. By the homotopy axiom (Axiom 1.2.5) , K;(y,) = 0 so by the Product
Theorem (Proposition 2.3.1 a)), K;(y') = 0.

c) follows from a), b), and Corollary 2.4.7.

d) By the commutativity of the index maps (Axiom 1.2.8), 8! = &; o K;(¢") so by the
Product Theorem (Proposition 2.3.1 a)),

610, (aw)wer) = 5i/(aw)wer’
for all (ag)eer € Ki(F)T'. For a € K;(F), by ¢) and by the above,
0= 0iK;(y)a = §i(a)per = di(a,(a)per) =

= 61'((170) + 5i(03 (a)a)EF’) = 61‘((1,0) + 61'/(‘1)(061"’ s

0i(a,0) = —5/(a)ger- It follows for all (ag)wer,
8i(ao)wcr = Gi(awy,0) +6i(0, (aw)per) =

= _51'/(“(»0)@61"’ + 5i/(aw)a)el"’ = 5,-/(aa, - awo)coel“ .

e1) and e;) follow from the Topological six-term sequence (Proposition 2.1.8) a1) and

by), respectively.
e3) follows from the Product Theorem (Proposition 2.3.1 a)).

e4) follows from d). |
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EXAMPLE 2.4.9 Let n € IN. We use the notation of Proposition 2.4.8 and put

2mij

Q::{re@ ‘ ;’E[OJ],jEINn}7 F::{e n

jeINn}, w=1.

a) Q\{wy} is null-homotopic and so K-null.
b) Ki(Way,) : Ki(6o (Q,F)) — K;(F) is a group isomorphism.
c) 8 Ki(¢(I',F)) ~ Ki(F)' — K1 (6o (Q\T,F)) is a group isomorphism.

d) If we identify K;(€ (I, F)) with Ki(F)*' and K;(¢ (U, F)) with K;(F)' (using e.g.
Lemma 2.1.4 ¢)) then for all (ag)gper

Ki(0")(ao)per = (4o)wer
where ag, = 0.

e) If we identify Kiy1(%o(Q\T,F)) with Ki(F)'' using (8/)7" of ¢) then for all
(aco)wer,

5i(aa))wel“ = (aa) - acoo)a)el"’ .

f) QEY7 p(Q) = 15 q(Q) :07 cI:.i,Q,F =K; (WCU()) ) QY:CY-

a) By Proposition 2.4.1, Q\ {a} is null-homotopic.

b) follows from a) and the Topological six-term sequence (Proposition 2.1.8 a)).

¢), d), and e) follow from Proposition 2.4.8 b), c), and d), respectively.

f) follows from a) and Proposition 2.4.1. [
PROPOSITION 2.4.10 Let Q be a locally compact spaces, ® € Q, Q' a compact space,

and
9: Q' x[0,1] — Q

a continuous map such that 9(®',0) = o for all ®' € Q'. Then the map
% (Q\{0},F) — ¢ (Q,F), x—x00(-,1)

is K-null
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For every s € [0, 1] put
Vs 1 6o (Q\ {0}, F) — € (@, F), x—x00(-,s).
Then for every x € 6, (Q\ {@}, F) the map
0,1] — € (Q,F), s— yux
is continuous and yyx = 0, so the assertion follows from the homotopy (Axiom 1.2.5).H
PROPOSITION 2.4.11 Let Q be a locally compact space, A a closed set of Q, T a

compact set of A, @y € T such that 6y (A\ {an},F) is K-null, and 9 :T x [0,1] — Q a
continuous map such that %(®,1) = w and ¥(,0) = @y for all € I'. Then

Ki(€o (Q\T,F)) = Ki(€o (Q\{an}, F)) x Kis1 (€0 (T\ {@}, F)) .
In particular if T is finite

Ki(%o (Q\L,F)) ~ Ki(%0 (Q\ {@o}, F)) x Kiyy (F) 1

We use the notation of the Topological triple (Proposition 2.1.11) and put
Q =0\ {m}, Q, :=Q\T, Q3 :=Q\A.

By Proposition 2.4.10, vy 5 is K-null and the first assertion follows from the Topological
triple (Proposition 2.1.11 b4)). The last assertion follows from the first one and from the
Product Theorem (Proposition 2.3.1 a)). |
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Chapter 3

Some Selected Locally Compact

Spaces

Throughout this chapter we endow {0, 1} with a group structure by identifying it with
Z;, F denotes an E-C*-algebra, i € {0,1}, and n € IN.






3.1 Balls
3.1 Balls

DEFINITION 3.1.1 We put

B, ={acR"| |a|<1}.
THEOREM 3.1.2 Let I be a closed set of By, wp €T, and T" :=T'\ {mp}.

a) B, \{wp} is null-homotopic and so Y-null, B, € Y1, and every exact sequence in
Mg belongs to (1B,)y. We use in the sequel the notation of Proposition 2.3.6 and
put there Q :=1B,,.

b) Ki(%o (B, \T,F)) = Ki11 (6o (', F)).

9

S .
Ki(y13) IRLISEN

0 — Ki(¢ (1B, F)) Ki(¢ (L, F)) o

813,

o Kir1(60 (B, \T,F)) —0
is a split exact sequence, and the maps
Ki(¢ (By, F)) x Kis1(%0 (B, \T',F)) — Ki(¢ (I, F)),
(a,b) — Ki(y13)a+ b,
83 Ki (¢ (', F)) — Kit1 (6o (1B, \T,F))
are group isomorphisms.

d) If B,\T € Y orI" € Y then with the notation of Corollary 2.1.9
8 : Ki (¢ (', F)) — Kir1 (60 (1B, \ {m},F))
is a group isomorphism and
B,\[LI'eY,  p(B,\I)=q("), q(B,\I)=p(’),
D (B,\r),F = Oi+1°P(i11) v F -

e) Assume I finite.
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er)
(8230) "+ Kiv1 (60 (B, \ T, F)) — Ki(F)T

is a group isomorphism.

e)
Ki(y13) : Ki(€ (B, F)) = Ki(F) — Ki(€ (T, F)) ~ K;(F)",

ar— (a)ower,

and, if we identify Kiy1(%y (B, \T,F)) with Ki(F)'' using the above group
isomorphism (8,3,;) ", then

813 Ki(C (T,F)) — Ki(F)“ T | (ag)per — (aw — aoy)oer -

e3)
B,\I'eY, p(B,\I') =0, q(B,\T') = CardT”,

i (1,\1),F = 023,(i+1) © Pl 1)1 F »
a) Since IB, is homeomorphic to [0,1]", it follows from Corollary 2.4.2 that

%o (Q\ {m},T) is null-homotopic and IB, € Y. By Proposition 1.5.4 d), B, \ {ap} is
Y-null and by Proposition 1.6.6, every exact sequence in )iz belongs to (IB,)y.

b), ¢), d), e1), and e3) follow from a) and Proposition 2.3.6.
e;) follows from a) and Proposition 2.4.8 e3),e4). |
Remark. By b), K;(%, (BB, \T',F)) depends only on K11 (%o (I, F)) and not on n or

on the embedding of I" in IB,,.

COROLLARY 3.1.3 Let (') jes be a finite family of pairwise disjoint closed sets of 1B,
J # 0, and for every j € J let ®; € T such that 6y (T';\ {w;},F) is K-null. Then

K; (% (IBn\ U rj,F>> ~
jeJ

~ Ki(6o (B, \ { o; ’ j€J},F)) ~ Kipy (F)CardI =1
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PutI':= U (T;\{®;}),

jer

v: % (B,\{w|jeJ},F)—GI,F), x——xl,

and denote by ¢ : 6 (]B,,\ U Fj,F> — %o (B, \ { ®; | j€J},F) the inclusion map.
jes
Then
0— % (IB”\UF,,F> 26 (B \{wj| jes},F) Y6 F) —0
jel

is an exact sequence in g . By the Product Theorem (Proposition 2.3.1 ¢)), %o (I, F) is
K-null so by the Topological six-term sequence (Proposition 2.1.8 b)) and Theorem 3.1.2

er),
K; (% (IBn \U rj,F>> ~
jeJ

~Ki(% (B, \{ ;| j€J},F))~ Ky (F)r /71 -

COROLLARY 3.1.4 Let (kj)jcs be a finite family in IN and for every j € J let T'j be
a nonempty finite subset of By,. If Q denotes the Alexandroff compactification of the
topological sum of the family (By; \ ;) je; then

QeY, p@=1, q(Q=) (CardT;—1).
JjeJ

Forevery j € J let w; € I';. By Theorem 3.1.2 a), By, \ {@;} is Y-null and the assertion
follows from Corollary 2.3.5 b). [

COROLLARY 3.1.5 IfQ is a path connected compact space, ® € Q, and @' € 1B, x Q
then

Ki (60 (Q\{w},F)) = K; (6o (B, x Q\{w'},F)) .

Bj Theorem 3.1.2 a), %y (IB, \ { o}, F) is K-null for every @y € IB, and the assertion
follows from Corollary 2.4.5. [
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COROLLARY 3.1.6 Let T be a closed set of B, and Q an open set of IB,,, Q CT. Then
SJorallw eT\ Q,

Ki(%0 (T\Q)\{w},F)) = Ki (%0 (T\ {0}, F)) x Kir1 (%0 (Q, F)) ,

Ki (60 (T\Q,F)) = K; (¢ (T,F)) x Ki+1 (60 (Q, F)) .

By Theorem 3.1.2 b),
Ki (%0 (T \{0},F)) ~ Ki1 (%0 (B, \T,F)) ,

Ki (%0 (T\ Q) \{w}, F)) = Ki1 (%0 (1B, \ (T\ Q), F))

and by the Product Theorem (Proposition 2.3.1a)),
Ki1 (%0 (By \ (T\Q), F)) = Kit1 (60 (B, \ T, F)) X Ki1 (%0 (Q,F)) ,

SO

Ki (o (T\Q)\ {0}, F)) = Ki(¢0 (T'\ {@}, F)) x Ki11 (€0 (Q,F)) -

The last relation follows from the Alexandroff K-theorem (Proposition 2.2.1 a)). [ |

COROLLARY 3.1.7 If Q is an open set of B, Q # 1B, and I" a compact set of Q then

Ki (%0(Q\T,F)) ~ K (60 (Q,F)) x Kis1 (€ (T, F)) .

Let @ € IB, \ Q. By Theorem 3.1.2 b),
Ki (%0 (Q,F)) = Kit1 (40 (B, \ Q) \ {0}, F)) ,
Ki (0 (Q\I,F)) ~ Kit1 (40 (B, \ Q) \ {@}) UL, F)) .
By the Product Theorem (Proposition 2.3.1 a)),
Ki1 (%0 (B, \ Q) \ {@}) UT, F)) =

~ Kit1 (60 (B, \ Q) \{@}, F)) x Kiv1 (¢ (T, F)),

Ki (6o (Q\T,F)) =~ K; (%0 (Q,F)) X Kit1 (€ (T, F)) . |
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3.2 Euclidean Spaces and Spheres

DEFINITION 3.2.1 We put

Si-1:={aeR"||laf]| =1}, T:=8§,.

THEOREM 3.2.2

@) R'eY, pRY=5C0" " grr) = =00

Ry C (IRn)T7 Ki (650 (IR",F)) ~ Kitn (F) .

b) S, €Y, p(S,)= 3+(;1)” , q(Sn) = 17(2—1)” , Ry C(Sy)r,

Ki(C (S, F)) =

K;i(F)? if i
%{ i(F) if n is even  Ki(F) % Kion(F).

Ki(F)xKi1(F) if n isodd

and the map
Ki(F) x Kiyn(F) — Ki(€¢ (Sy,F)), (a,b) — Ki(A)a+Kin(@)b

is a group isomorphism, where @ : 6y (IR",F) = K;1,(F) — € (S,,F) denotes

the inclusion map and

AZF—)%(SV,,F), .XI—)x1<g($hC).

¢) Let T be a closed set of R", T" £ IR".

c1) The map
¢ (R",F)— € ((T,F), x+—x|T

is K-null.

c2) If T is compact then
Ki(o (R"\ T, F)) ~ Kiya(F) x Ki11 (% (T, F))
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Ifin additionT € Y then R"\T €Y, and

(R'\T) gI)+1 if nis even
u B g(I') if nisodd
(IR"\T) = p() if nis even
1 | p(M)+1 if nisodd

d) IfT is finite then R"\T € Y, and

1 if nis even
R'\T) =
PIRTAT) { 0 if nisodd
J(R"\T) = CardI’ %f n i's even
CardI"'+1 if n isodd

e) LetT be a closed set of S, T #S,, @ €T, and " :=T\ {w}.

e1) Ki(6o (8, \T,F)) = Kiyn(F) x Kiv1(%0 (C\ {0}, F)).
e2) IfT' €Y then S,\T €Y, and

gI)+1 if nis even
p(8$,\I') = , . .
gy if nisodd
p(I”’ if nis even
gs\ry =4 P e
p(I)+1 if nisodd
e3) If T is finite, then S, \T" € Y, and
1 if nis even
S, \I') =
PSAD) {o i nisodd
CardI” if nis even
S.\I')=
4(S:\T) { CardI’ if nisodd

f) If me IN,m <n, then

Ki(%0 (Sn\ S, F)) ~ Ki(6o (R"\IR™, F)) = Ki(F) X Kitn-mt1(F) -

g) FormeIN,m <n,

Ki(%0 (B, \ Sy, F)) ~ Kipms1 (F)
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a) Since IR is homeomorphic to |0, 1[=1B; \ {—1, 1} we get
ReY, p(R)=0, ¢(R)=1
from Theorem 3.1.2 e3) and the assertion follows from Corollary 1.5.12.

b) Since S, is homeomorphic to the Alexandroff compactification of IR", b) follows
from a) and the Alexandroff K-theorem (Theorem 2.2.1 a),b)).

cl) We may assume 0 € IR"\T". Put

1
9:T'x]0,1] — R", (0,5)— —®
N

and for every s € [0, 1]

(- j 0
Ve % (RMF) > G (DF), xeq ~000S) 057
0 if s=0
Then for every x € %y (R", F),
[071] — %0 (FaF)a S YsX

is continuous, Yjx = x

I', and yox = 0. Thus the assertion follows from the
homotopy axiom (Axiom 1.2.5).

c2) We identify the homeomorphic spaces { o« € IR" | ||a|| < 1} and IR", put @ :=
(1,0,---,0) € B, and

v: %o (B \{0},F) — G ((Sp1 \{@}) UL F),  xr—x[((Sp1\{w})UT),

and denote by ¢ : 6y (R"\T',F) — % (1B, \ {w}, F) the inclusion map and by &;
the index maps associated to the exact sequence in Mg

0 — %o (R"\T,F) - 6 (B, \ {®},F) — %o ((Su_1 \ {©})UT,F) — 0.

By Theorem 3.1.2 a), % (IB, \ {®},F) is K-null so by the Topological six-term

sequence (Proposition 2.1.8 c)), the map
811 < Kip1 (60 ((Su-1 \ {0}) UL F)) — Ki(% (R"\ T, F))
is a group isomorphism. By the Product Theorem (Proposition 2.3.1 a),b)),

Ki1(%0 ((Sn-1 \{@}) UL, F)) = Ki1 (60 (Sn-1 \ {@}, F)) x Ki11 (€ (I, F)),
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and " € Y implies R"\I" € Y. By a), Ki+1(%0 (Sn—1 \ {0}, F)) =~ Ki1n(F) so
Ki(0 (R"\ T, F)) ~ K (F) x Ki11(% (T, F))
as well as the last assertions.
d) follows from c) and the Product Theorem (Proposition 2.3.1 a),b)).
e) S, \I is homeomorphic to R"\ (I'\ {®}) and the assertion follows from c) and d).

f) Step 1
Ki(%0 (Sn\Sm,F)) = Ki(6o (R"\IR", F))

Let w € S;,. Then S,\S,, = (S, \ {®})\ (S \{®}). Since (S, \ {@0})\ (Sn\
{®}) is homeomorphic to IR" \ IR” we get

Ki(%) (Sn\ S, F)) ~ Ki(%o (R"\ IR", F)) .

Step 2
Ki(¢o (R"\R",F)) =~ Ki(F) X Kin-mi1(F)

n
We identify IR" \ IR™ with{aean lal <1, ¥ a};éo},put
Jj=m+1

l//:IBn\IBm — sn—l\sm—h x’—>x|(sn—l \Sm—l)a

and denote by ¢ : R” \ IR” — IB,, \ IB,, the inclusion map and by &; the index

maps associated to the exact sequence in Mg
0 — G (R"\IR",F) %+ € (B, \ By, F) — € (Sn—1\ S_1,F) — 0.

By Proposition 2.4.1, % (B, \IB,,, F) is K-null so by the Topological six-term
sequence (Proposition 2.1.8 c)) and Step 1,

Ki(€o (R"\IR",F)) ~ Kiy1(€0 (Sn—1 \ Sp—1,F))

~ Kt (%() (IRnil\IRmil,F)) .

Form =1, by e;),

Ki(6o(IR"\IR,F)) =~ Ki 1 1(€0 (Sn—1\80,F)) ® Ki1n(F) x K;(F) .
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By induction and by the above,
Ki(%o (R"\IR", F)) = Kisn-m+1 (60 (R" "'\ IR, F)) ~
~ Kisn-m+1(F) x Ki(F) .
g) Letw € S,,,. Since S, \ {®} is homeomorph to R™, by a),
Ki(6o (Sm\ {0}, F)) = Kism(F) .
By Theorem 3.1.2 b),

Ki(6o (By \ S, F)) = Kir1 (0 (Sm \ {0}, F)) = Kiy14m(F) . u

EXAMPLE 3.2.3 Put

2mij
Qq :=Slu{re n

re[o,l],jean},

Q=S U{aeBs|z=0}u{aceBs|oy=0=0},

ngsn1u< U {acB,| a.,-0}> :

J€NR

a) K,‘ (%(Ql,F)) = K,’ (F) X Ki+1 (F)n
b) K; (€ (Q0,F)) ~ K; (F)* x Kiy1 (F)>.

n

c) Ki(€ (Qa,F)) = Ki (F) x Kipny1 (F)°

a) By Theorem 3.2.2 b) and the Product Theorem (Proposition 2.3.1 a)),
K; (6o (B2 \ Q1,F)) = K; (F)"
and by Theorem 3.1.2 a),b),c),

Ki (¢ (Q1,F)) = K; (¢ (B, F)) x Kit1 (%0 (IBQ\Q]7F)) ~ K; (F) x Ki11 (F)n.

b) By Theorem 3.2.2 a),b),
R’S; €Y,  pR)=1, ¢R)=0, p(S1)=1, ¢(S1)=1,
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so by Corollary 1.5.11 d}),
Ki (65 (R* x 81,F)) = K; (F) x Ki1 (F) .

Since B3 \ Q; is homeomorphic to the topological sum of two copies of IR” x S| we get
by the Product Theorem (Proposition 2.3.1 a))

K; (60 (B3 \ Qy,F)) ~ K; (F)* x Ki11 (F)* .
By Theorem 3.1.2 a),b),c),
Ki (€ (Q2,F)) = K; (¢ (B3, F)) x Kiv1 (€0 (B3 \ Q2,F)) =~ K; (F)* x K11 (F)*.
¢) By Theorem 3.2.2 a), K; (%o (R",F)) ~ K1, (F). Since IB,, \ Q3 is homeomorphic

to the topological sum of 2" copies of IR”, we get by the Product Theorem (Proposition
2.3.1a)) K; (6o (B, \ Q3,F)) ~ Kin, (F)*". By Theorem 3.1.2 a),b),c),

Ki (¢ (Q3,F)) = K;i (€ (B, F)) x Kiy1 (%0 (1B, \ Q3,F)) =

n

~ K; (F) X Kins1 (F)* . [

Remark. The above a) and b) will be generalized in Example 3.5.11 b) and c),

respectively.
COROLLARY 3.2.4 Let (kj)jcy be a finite family in IN and
p:=Card { j€J|kjiseven}, q:=Card { j€J|kjisodd} .
a) If Q denotes the Alexandroff compactification of the topological sum of the family
(IRk-j)jej then

QeY, RyCQy, pQ)=p+l, ¢qQ)=q.

b) For every j € J let wj € Si; and let Q' denote the compact space obtained from
the topological sum of the family (Skj) jes by identifying all the points of the family
(wj)jej. If J # O then

Qer, Ry C QF, p(Q)=p+1, q(Q)=gq.

In particular if ki =1 for all j € J then p(Q') =1, g(Q') = Card J.

96 Science Publishing Group



3.2 Euclidean Spaces and Spheres

a) By Theorem 3.2.2 a), IR € Y, Ry C (IR%)y,

(IRki)* 1 if kjiseven <1Rk/)* 0 if kjiseven
d ") o it kjisodd 1 11t kjisodd

for every j € J. The assertion follows now from the Product Theorem (Proposition 2.3.1
b)) and from Alexandroff’s K-theorem (Proposition 2.2.1 b)).

b) follows from a) since  and Q' are homeomorphic. |

COROLLARY 3.2.5 Let (kj)jcs be a finite family in N,
p:=Card { jeJ|kjiseven}, q:=Card { j€J|kjisodd},

(T'j) jes a pairwise disjoint family of closed sets of B, such that T'j is homeomorphic to
Sy, forevery j€J, and T :=J;c;T'j. Then

B,\I'eY, RyC(B,\Iy, pB,\I)=¢q, ¢(B,\I)=2p—1.

By Theorem 3.2.2 a),b), for j € J,

RY, 8, €T, Ry C (RY)rN(Sk)r,

() = ECDY () 1

» (Sk,) _ 3+(2—1)k/' ’ q(Sk_/) _ 1— (=1l '
Let w e Cand I" :=T\ {@}. By the Product Theorem (Proposition 2.3.1 b)),
I'eY, RecIy, pI)=2p-1, ¢)=q,
so by Theorem 3.1.2 d),
B,\[€Y, RyC(B\Dy, pBAD=q, ¢B\D)=2p—1. B
COROLLARY 3.2.6 If Q is a connected closed set of 1By possessing a triangulation

with rq vertices, ri chords, and r, triangles then

K; (€ (Q,F)) ~ K; (F) x Ky (F)' 77071772
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Sketch of a proof. If Q has k holes then ro — ri +r, +k = 1. By Theorem 3.1.2 ¢),

Ki (€ (Q,F)) = Ki(F) x Ki11 (60 (B2 \ Q,F)) .

By Theorem 3.2.2 a) and the Product Theorem (Proposition 2.3.1 a)),
Ki (6o (B2 \ Q,F)) ~ K; (F)"
SO
Ki (€ (Q,F)) = K; (F) x Kiy (F) 70— |
COROLLARY 3.2.7 We identify the homeomorphic spaces R" and
{aeR"|[af| <1} .

Let T be a finite subset of R", A a subset of T, ® € A, T :=T\ {0}, A :=A\{w}. We
use the notation of the Topological triple (Proposition 2.1.11) and put

Q I:IB,,\{(J)}7 QzI:IRn\A, Q3 ZZIR"\F.

a) 012, and 0y 3; are group isomorphisms.
b) yn 3 is K-null.

¢) If we put ®;:= 8 3 (i11) 0 Kir1(9) 0 (8 5,(151)) " then

Ki(¢23)
[N

0 — Kip1 (% (T\ A F)) 2, k(4 (R"\T,F)) _a

Ki(923)
o Ki(6o(R"\A,F)) — 0

pa—

is a split exact sequence and the map
Ki1(€ (T\AF)) xKi(6 (R*"\ A F)) — Ki(%o (IR"\T,F)),

(a,b) — 853 iy 1ya+ Pib

is a group isomorphism.
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By Theorem 3.1.2 a), %) (Q1,F) is K-null and by Proposition 2.4.10, y» 3 is K-null.
By the Product Theorem (Proposition 2.3.1 a)),

Ki(wo @) = idk,(4,0,\0..F))
and a) and c) follow from the Topological triple (Proposition 2.1.11 c)). [ |
COROLLARY 3.2.8 Let w € S,,_1. We use the notation of the Topological triple
(Proposition 2.1.11) and put

Q= IBn, Qy = IB,,\{CO}, Q3 = IBn\Sn,1 .

a) @13 is K-null.

b) &3 : Ki(€o(Sp-1\{0},F)) — Ki1(6o(IB,\S,—1,F)) is a group
isomorphism.

c) If we put ®; := Ki(@)o(83,;) ! then

S .
Ki(v13) L3

0 — K;(¢ (IB,,F)) Ki(€ (Sp-1,F)) o

813,

D; *)KH»I (Cg() (IBn\Sn,l,F)) —0

is a split exact sequence and the map

Ki(€ (By, F)) X Ki11 (%0 By \ Sp—1,F)) — Ki(€' (801, F)),

(a,b) — Ki(y13)a+ Db
is a group isomorphism.
d) Let ¢ : G — H be a morphism in Mg and put
¢p: ¢ (B,,G) — € (B,,H), x+—¢ox,
¢&s: € (Sy-1,G) — € (Sy—1,H), x— ¢ox,

OBss: 60 (B, \Sn—1,G) — 6o (B, \Sy—1,H), x—>¢ox.

If we identify Ki(€ (Sn—1,F)) with

Ki(¢ (B, F)) x Ki1(%o (B, \ S,-1,F))
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for F € {G,H} using the isomorphism of c) then
Ki(¢s) : Ki(¢ (Sp-1,G)) — Ki(% (Sp-1,H)),
(a,b) — (Ki(¢m)a, Kit1 ($Bs)b) -

By Theorem 3.1.2 a), % (IB, \ {®},F) is K-null and the assertion follows from the
Topological triple (Proposition 2.1.11 a)) and Corollary 2.1.12 b). |
PROPOSITION 3.2.9 Put

-Q::IBn+1\{aESn| Olp+1 :0}7
Q:=S,\{aeS,|01=0},

V6 (Q,F) —><€0(Q/,F) , x— x|Q

and denote by
¢ : 6o (B \SmF) — 60 (Q,F)

the inclusion map and by &; the index maps associated to the exact sequence in Mg

0 — G0 (Buy1 \ Sn, F) 25 6 (Q,F) 5 6 (Q/,F) — 0.

a)
I(i(%()(QaF))%I(iJrn(F)a Ki (%0 (QI,F)) %[(iJrn(F)zv
Kit1(60 (Byt1 \ S, F)) = Kiyn(F) -

b) If we identify the groups of a) then

5i : Ki ((50 (Q/7F)) — I{i+1((£0 (IBVH-I \SnaF))7 (Cl7b) — Cl+b7

K; 5[
0 — Ki(%0 (Q,)) i) Ki (%0 (€,-)) — Kiz1(%0 (Buy1 \ Sp, ) — 0

is an exact sequence, and there is a group automorphism ®; : Ki,(F) — Ki1,(F)
such that

K,(l]/) . Ki(%o (Q,F)) — K,’ (Cgo (Q/,F)) , ar— (CIDia, —<I>,~a) .
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c) If
A %0 (.Q.,F) — %(]Bn+l,F) s
A" 6 (QF) — € (Sy,F)

denote the inclusion maps and if we identify K;(6o (Q',F)) with K;y,(F)?* using a)
and K;(€ (Sy,F)) with K;(F) X Ki1,(F) using Theorem 3.2.2 b) then A" is K-null

and

Ki(A") 1K (¢ (Q,F)) — Ki(€ (Sn. F)), (a,b)— (0,a+b).

a) By Theorem 3.2.2 a), K;(%)(R"F)) =~ Ki,(F). Since B,1; \ S, is
homeomorphic to IR™"!, Kii1(%0 (Byt1 \ Sy, F)) = Kiyn(F). Since Q' is
homeomorphic to the topological sum of IR” and R", K;(%y (', F)) ~ Ki,(F)?* by the
Product Theorem (Proposition 2.3.1 a)). Put

F'={acQ| a1 =0}
and for every s €]0, 1]
O Q\I' — Q\T', () jeN,,; — ((&)) jeN, 50 11) -

By Proposition 2.4.1, %, (Q\T,F) is K-null, so by the Topological six-term sequence
(Proposition 2.1.8 a)), K;(6y (Q,F)) = K;(%o (I',F)). Since I' is homeomorphic to IR”,
Ki(60 (Q,F)) ~ K;+,(F) by the above.

b) Put ® := (1,0,---,0) € B4,
V' 1 6 (B \ {0}, F) — G (Sa\{0},F), x+—x|(Sy\{w}),

and denote by
90/ : %0 (IBVH-I \SnaF) — (go (IBn—H \{w}7F) )
(PU 1 6o (Q,F) — %o (IB,H_l \{(D},F)
0" 6 (', F) — € (Sy\{w},F)
the inclusion maps and by &/ the six-term sequence index maps associated with the exact
sequence in Mg

0~ Go(Byst \ S F) -2 % (Busr \ {0}, F) ¥ % (S, \ {©}.F) — 0.
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By Theorem 3.1.2 a), 6o (IByt1 \{@},F) is K-null so by the Topological six-term
sequence (Proposition 2.1.8 c)),

8 Ki(6o (Sn\{®},F)) — Ki11(%0 (Bys1\ Su, F))

is a group isomorphism. By the commutativity of the index maps (Axiom 1.2.8), &; =
0/ o K;(¢"). Thus if we identify the above groups using &/ then §; is identified with
Ki(¢"). By Corollary 2.3.2

Ki(¢"): K (6o (¥, F)) — Ki (%0 (Su\{®},F)), (a,b)—>a+b.
Since S, \ {®} is homeomorphic to IR”, we get
8 : Ki (60 (Q,F)) — Kis1(60 (Bps1 \Su,F)), (a,b) —>a+b.

Thus §; is surjective and the other assertions follow from the six-term axiom (Axiom
1.2.7).

c) A’ is K-null since it factorizes through null (Theorem 3.1.2 a)). Put
o :=(1,0,---,0) € B, and denote by

A" 6 (S \{w},F) — € (S, F)
the inclusion map. By the proof of b), since A” = A" o ¢,

Ki(A") :K; (€ (Q,F)) — Ki(€ (S, F)), (a,b) — (0,a+D)

by the Alexandroff K-theorem (Theorem 2.2.1 a)). [ |

PROPOSITION 3.2.10 Let I be a closed set of R", T" # IR",
0:% (R"\I',F) — % (R",F)
the inclusion map,
v:% (R, F)— % ([,F), x—x|[,
and &; the index maps associated to the exact sequence in Mg

0 — % (R"\T,F) -5 6 (R",F) -5 %, (T,F) — 0.
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a) yis K-null.
b) The sequence
0 — Kiit (%0 (T, F)) 25 Ki(6 (R"\ T, F)) % 4 (0, F) — 0
is exact.

c) Let (Q;) jes be a finite family of pairwise disjoint open sets of R" the union of which
is R*\T. If there is a jo € J such that G (R"\ Qj,,F) is K-null then for every

Jos
clopen set T of T

K; (6o (IR"\T",F)) ~ Ki1 (60 (', F)) x Kiz:n(F) .

a) follows from Proposition 2.4.10.
b) follows from a) and the six-term axiom (Axiom 1.2.7).

¢) We use the notation of Proposition 2.3.7. For I" =T the assertion follows from
Proposition 2.3.7 ¢;) and Theorem 3.2.2 b). Let

¢:% (R"\T',F) — % (R",F),
¢ : 6 (R"\I',F) — % (R"\T",F)
be the inclusion maps,
V6 (R F)— % (I',F), xr—x|[',

5; the index maps associated to the exact sequence in Mg

0— % (R"\T,F) -2 % (R" F) L5 % (T, F) — 0,

Thus
/ Si+l / ﬂﬂ'
0— Kip1 (60 (T',F)) — Ki (6o (R"\I",F)) & Ki(¢)(R",F)) — 0
is a split exact sequence and this implies c). [
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PROPOSITION 3.2.11 Let Q,Q’' be compact spaces and m € IN. If Q is path connected,
Qx Q' C B, and B, \ (Q x Q') is homeomorphic to the topological sum of B, \ (Q X
B,,) and Q x (IB,, \ Q') then for all ® € Q and @y € Q x Q'

Ki (%0 (% @)\ {an}.F)) =

~ K; (60 (Q\{0},F)) x Kiy1 (60 (2 x (B \&),F)) .

In particular if there is a p € IN such that 1B, \ Q' is homeomorphic to p copies of R™
then

Q

Ki (60 (@ x Q) \{m},F))
~ K (0 (Q\ {0}, F)) X Kitmi1 (€ (Q,F))" .

By Theorem 3.1.2 b) and the Product Theorem (Proposition 2.3.1 a)),
Ki (60 (Qx Q)\{},F)) = Kir1 (6o (B, \ (Qx Q). F)) ~
~ Kiv1 (60 (B, \ (2 x By,),F)) X Kit1 (%0 (@ x (IB,, \ Q'),F)) .
By Theorem 3.1.2 b) and Corollary 3.1.5,
Kit1 (%0 (IBn \ (Q x By), F)) = Ki (60 (2 x By) \ {0}, F)) ~

~ K (60 (Q\{w},F))
and so
Ki (60 (Qx Q) \{a}.F)) =~
~ K; (60 (Q\ {0}, F)) x Kiy1 (6o (Q x (B \&Q),F)) .

We prove now the last assertion. By Theorem 3.1.2 a),
Kip1 (60 (R",€ (Q,F))) & Kismi1 (€ (Q,F))
so by the Product Theorem (Proposition 2.3.1 a)),
Kiv1 (60 (@x (B, \Q'),F)) = Kir1 (60 (B, \Q, € (Q,F))) =~
~ Kiy1 (6o (R, € (Q,F)))’ ~ Kitmy1 (€ (Q,F))",

K (6 (@ x @)\ {an},F)) ~
~ K (60 (@\{@},F)) X Kismt (€ (Q.F))" . n
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COROLLARY 3.2.12 Let Q be a connected graph contained in 1B, and containing S1,
ro and ry the number of vertices and chords of Q, respectively, and I" a nonempty finite
subset of S, X Q. Then

K (0 (S0 x ) \TLF)) =
~ Kiin (F) X&+l+n (F)l_r0+rl XKi+l (F)rl—r0+CardF )
Assume first I' = {@y} for some @y € S, x Q. There is an embedding of S, x Q in
B2 such that B, 42 \ (S, X Q) is homeomorphic to the topological sum of B, 12 \ (S, X

IBy) and S, x (IBy\ Q). Since S, x (B2 \ Q) is homeomorphic to 1 — ry + | copies of
S, x IR?, we get by Proposition 3.2.11, for o € S,,,

Ki (0 ((Sn x Q) \{@},F)) =

~ Ki (60 (Sn \ {0}, F)) x K1 (€ (8, F))' 70

By Theorem 3.2.2 a),b),
Ki (%0 ((Sn x Q) \{@},F)) & Kiyn (F) X Kig110 (F)' 707 5 Kipy (F) 770
By Proposition 2.4.11,
Ki (%0 ((Sy x Q)\I',F)) ~
~ K (60 ((Sn x Q) \ {@y}, F)) x Kiy1 (F)“ T =

X Kipn (F) X Kip 140 (F) 70 5 Ky (F)11 oG n

COROLLARY 3.2.13 If

Q:—SnlLJ( U {OCGIBn| aj_0}>a

JEN,

m € IN, and I is a finite subset of S,;, X Q then
Ki (%3 ((Swx Q) \T,F)) ~

~ Kiym (F) X Kipnt1 (F)zn X Kitmini1 (F)zn X Kit1 (F)Can“ll .
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Assume first I' = {@y } for some @y € S,, X Q. There is an embedding of S,, X Q in
B, tnt+1 such that B,,+1 \ (Sy x Q) is homeomorphic to the topological sum of
Btnttl \ (Sm x By) and S, x (B, \ Q). Since B, \ Q is homeomorphic to the
topological sum of 2" copies of IR", by Proposition 3.2.11, for @ € S,,,

I{l((gO((sm XQ)\{(DU}aF)) ~

~ Ki (G0 (Sn \{®},F)) X Kisni1 (€ (S, F))” .

By Proposition 3.2.2 a),b),

7

Ki (6o ((Sn x Q\{@},F)) ~ Kism (F) % Kiv 100 (F)” % Kistmsn (F)”

By Proposition 2.4.11,
Ki (€0 ((Sm x Q)\I',F)) ~

~K; (G0 ((Snx Q) \{w},F)) x Ki+1 (F)Cardl"—l ~

7

~ Kism (F) X Kisni1 (F)” X Kigmnin (F)? x Kipy (F)S 0 u

LEMMA 3.2.14 Let (kj)jc, be a family in IN, n # 1, and m := 1+ Y. kj. There is
JEN,
an embedding of [] Sy; in B, such that 1B, \ 11 Sy; has two connected components:
JEN, JENL

one is homeomorphic to R'™  x [ Si; and the other is homeomorphic to B, \

.ieINn—l
Bk, x II Sk |
JEN,

We prove the assertion by induction with respect to n € IN\ {1}. Assume first n = 2,
put

1
F::{aeIBm| lx|l = =

50 Otk = O34k ="'=Oﬂm=0},

and for every a € IB,, denote by d(a) the distance of o to I'. Then

{aelB,ﬂd(a)i}

is an embedding of Sy, x Sy, in IB,, with the desired properties.
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Let now n > 2 and assume the assertion holds for n — 1. Let I" be a closed set of IB,,_,

homeomorphic to [] Skj. We may assume I' C §,,,_,,. We denote for every o € IB,,
JEN,

by d() the distance of & to 3T. Then { & € B,, | d(c) = } } is an embedding with the
desired properties. [

PROPOSITION 3.2.15 Let (kj) je, be a family in IN.

a) I1S e, Ry C [ TI Sg; | -
J=1 j=1 Y
n
K; ¢ HSkI,F ~
=1
Ki(F)* if  all (kj)jen, are even

n—1

(K,-(F) X K,-+1(F)) if not all (k;)jen, are even

b) If ' is a nonempty finite subset of [1 Sk, then
J€ENy

K; <% ( I Skj\l",F)) ~
JEN,

{ K (F)* ' x Ky (F)C@dT1 if  all kjare even

n—1 n—1
K (F)* “'x K (F)* T€“T=2if  notall k;are even

a) By Theorem 3.2.2 b), Sy, € Y, IRy C (Sy;)y for every j € J so by Proposition

15,11 2,0, [T Sk, € Y, Ry C (H skj.) . By Theorem 3.2.2 b), with the notation of
= =1

Y
Proposition 1.5.11 a),f),

pr=y (2"+f[ (H(l)"-/’)) S a=s <2H (H(l)"f)) ,

J=1

and this implies the result.

Science Publishing Group 107



Chapter 3 Some Selected Locally Compact Spaces

b) Assume first I' = {ay} for some @y € T[] Si;. We prove the assertion by
JEN,
induction with respect to n € IN. For n = 1 this follows from Theorem 3.2.2 ¢;). Let

n # 1 and assume the assertion holds for n — 1. By Lemma 3.2.14, IB,, \ [I Sy, is
JENy ~
homeomorphic  to  the topological sum of R x ] S;; and
jEINn—]

B, \ | Bijx, X II S, |. By Proposition 3.2.11, foro € [] Sy,
JEIN, JEN, -

i T1 s tor) ) ~
JE€Ny
~ K; <cg0< H Skj\{a)},F>> X
JENy—

XK,'_H <<50 ((IBm\Sk”) X H Skj7F>> .
JEN,

By a) and Theorem 3.2.2 g),
K (% ((IB,, \Se)x J1 Skj,F>> ~
jGIanl

~ Kii, (%”( H Skj,F>>%
JEN—

Kk, (F )2'17l if  all (k})jen, , are even
on—2
(K,- (F) X Kiy1 (F)) if notall (k;) e, , are even

By the induction hypothesis,

K; (%0( H Skj\{a)},F>> =
JENy—1

N { K; (1"")2)H - if  all (kj)jen, , are even

K; (F)zniz_1 x Kiy1 (F)? 7 if notall (kj)je,_, are even

K; (% ( I1 Skj\{wo},F>> ~
JEN
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K; (F)zn_1 if  all (k) jen, are even
Ki(F)* "' x K  (F)"if notall (k;) e, are even

This finishes the inductive proof.

We prove now the general case and put Q := [] Sy;. Since it is possible to find a
JENy

closed set A of Q such that ' C A and A\ {@yp} is K-null, the assertion follows from

Proposition 2.4.11. |

3.3 Some Morphisms

PROPOSITION 3.3.1 We put
¥:B, —B,, (Q))jeN, — (01, -, 0—1,—0),

9 R" —R", (&))jen, — (O, 01, — ),
" 81— Suo1, () jenN, — (O, 01, —0ly)
¢:¢(B,,F)— ¢(B,,F), x+—xo0d,

0" Gy (R",F) — G (R",F), x+—sxod,

0" € (Sn—1,F) — € (Sp-1,F), xr—rxo0d”.

a) Ki(¢): K{(¢ (B,,F)) — K;(¢ (B,,F)), ar—a.
b) K,’((b/) ZK,'((KO (]Rn,F)) — Ki(%o (]Rn,F)), b+— —b.
c)
Ki(¢") : Ki(C (Sn-1,F)) — Ki(€ (Su-1,F)),

(bya) if n=1
(a,—b) if n>1
where we identified K;(€ (S,—1,F)) with

(a,b) »—>{

Ki(€ (B, F)) X Kiv1(%0 (B, \ 81, F))

using the group isomorphism of Corollary 3.2.8 d) if n > 1.

Science Publishing Group 109



Chapter 3 Some Selected Locally Compact Spaces

a) follows from the homotopy axiom (Axiom 1.2.5) since ¢ is homotopic to the identity
map of € (IB,,, F).

b) We identify IR” with the homeomorphic space B, \ S,—_;.
Assume first n = 1. Put
y:%¢ (B, F)—%{-1,1}F), x—x|{-1,1}

and denote by ¢ : 65 (] —1,1[,F) — % (IB1,F) the inclusion map and by §; the index
maps associated to the exact sequence in Mg

0—%(—1,1[,F) 2 ¢ (B,,F) 5 € ({-1,1},F) — 0.

By Corollary 2.4.7, K;(y)a = (a,a) for every a € K;(¢ (1B}, F)) so by the six-term axiom
(Axiom 1.2.7),

oi(a+b,a+b)=0, 6i(a,b) = —&;(b,a)

for all (a,b) € K;(¢ ({—1,1},F)). By the commutativity of the index maps (Axiom
1.2.8), Ki+1(9") 0 &; = 80 K;(¢"). For (a,b) € K;(¢ ({—1,1},F)), by the above,

Ki1(9')8i(a,b) = 6Ki(¢")(a,b) = 8i(b,a) = —&i(a,b) .

Since &; is surjective (because ¢ factorizes through null and is therefore K-null),
Ki(¢")b=—bforallbe K; (% (] —1,1[,F)).

If n > 1 then the assertion follows from the case n = 1, since
(go(IRn,F)%CKQ(IR,%()(]RH_I,F))

c) follows from a), b), and Corollary 3.2.8 c). [ |

COROLLARY 3.3.2 Ifwe put
¥:B,—B,, o— —«,
¥ :R" —R", ar— —0,
8,1 —Su1, a— —a,

¢:%(B,,F) — ¢ (B,,F), x——xo00,
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3.3 Some Morphisms

¢ 6 (R",F) — % (R",F), x—sx0v,
0" : € (Sn—1,F) — € (Sy-1,F), xr—x00”

then
K,((])) K(%(IB,“F)) —>Ki(<g(IBn7F))7 a—ra,

Ki(9') : Ki(6o (R",F)) — Ki(%p (R",F)), b+ (—1)"b,
Ki(9"): Ki(€ (Su-1,F)) — Ki(€ (Sn-1,F)),

(b,a) if n=1

(a’b)%{ (a,(=1)""1b) if n>1

where we identified K;(€ (Sp—1,F)) with
K (1B, F)) Koy (0 (B, 1. )

using the group isomorphism of Corollary 3.2.8 ¢) ifn > 1.

The assertion for K;(¢) follows from the homotopy axiom (Axiom 1.2.5) since ¢ is
homotopic to the identity map of ¢ (IB,,, F). If n is even then the same holds for K;(¢’).
Assume now n odd and let us denote by ¢’ the map denoted by ¢’ in Proposition 3.3.1.
Then ¢’ o ¢’ is homotopic to the identity map of 6y (IR”,F) so by Corollary 3.3.1, for
every b € K;(6y (R",F)),

The assertion for K;(¢") follows from the corresponding assertions for K;(¢) and K;(¢")
and from Corollary 3.2.8 d). [

PROPOSITION 3.3.3 Let o, € 0,27], a < B, Q:={ ¢® | o €], B[}, [:=T\Q,
0 :%0(Q,F) — € (I,F) the inclusion map, and
v:€MF)— €T, F), x— x|,
v:¢(T,F)—F, x—x(1),
B—a

9 :0,2x[—]a, B[, ©+— 7a)—s—oc.
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For every x € 6y (Q,F) put

x(em(“’>) if we€]0,2x[

FT—F, &9—
0  if we{0,21}

and define
0:%6 (Q,F) — @\ {1},F), x—x.
a) Ki(¢) and K;(W) are group isomorphisms and so
Ki((g() (Q,F))%KiJrl(F), K,»(%(F,F))zKi(F) .
b) If we identify K;(6¢o (Q,F)) with Ky (F) and K;(¢ (I, F)) with K;(F) using the

isomorphisms from a) and K;(6 (I, F)) with K;(F) x Ki11 (F) using e.g. Alexandroff
K-theorem (Theorem 2.2.1 a)) then

Ki((p):Ki(%O(QvF))—)Ki((g(]LF))v bl—>(0,b),

Ki(w) : Ki(% (ILF)) — K(¢ (T,F)), (a,b) —a.

a) ¢ is an E-C*-isomorphism. Put
V:F—9C(F), x—lgrpx.

Then € (I, F) Yr¥ % (I',F) is a homotopy in Mgso K;(¢) and K;(¥) are group
isomorphisms by the homotopy axiom (Axiom 1.2.5). The last assertion follows now

from Theorem 3.2.2 a).
b) For every s € [0, 1] put

al if wel0,a]
. . 27i(1—s)(0—0)
O T—T, P 50" pa if oe€la,pl
250 p2mi(1—s) if e [ﬁ@ﬂ
¢s: ¢ (,F)— CMF), x—>xo0d.

Then (¢5)se(o,1] is a pointwise continuous path in ¢ (I, F') such that ¢; is the identity map.
By the homotopy axiom (Axiom 1.2.5), K;(¢) is the identity map of K;(¢ (I, F)). Let

¢ : G @\{1},F) — ¢ (IF)

112 Science Publishing Group



3.3 Some Morphisms

be the inclusion map and
Vv CMF)—F, x——x(1).
Then ¢oo @ = @' 0 ¢ and Y o ¢y = W o y so (by a)) for a € K;(F) and b € Ky (F),
Ki(@)b = Ki(90)Ki(9)b = Ki(¢')Ki(9)b = Ki(¢')b = (0,b),
Ki(y)(a,b) = Ki(W)Ki(w)(a,b) = Ki(y')Ki(¢0)(a,b) = Ki(y') (a,b) =a

by the Alexandroff K-theorem (Theorem 2.2.1 a)). [ |

2mij
n

PROPOSITION 3.3.4 PutT := { e

jean}and
y:¢MF)—E¢(I,F), x—x|[,

and denote by
(2 CgO(]I\FaF) —)%(]I,F)

the inclusion map and by §; the index maps associated to the exact sequence in Mg

0— % @\I,F) -5 ¢ @,F) -5 ¢(,F)—0.

a) Ki(6o M\I',F)) = Kip1 (F)",  Ki(% (I, F)) = Ki(F)".
b) We identify the isomorphic groups of a) and identify K;(¢ (I,F)) with K;(F) x
Ki+1(F) (Theorem 3.2.2 b)).

I(z((p) :Ki(%o (]I\F7F)) —>Ki(<g(’][7F))v (b/)jEH\In — (O’ Z bj) ;

JEN,
Kl(‘l’) ;Ki(%(]LF)) _>Ki((g(F7F)% (avb) — (a)jGINn :

If n =2 and K; (F) is isomorphic to Z or to Z, for some p € IN or to the group of

rational numbers then there is an automorphism
such that

8 Ki (€ (T,F)) — Kip1 (6o (I\L,F)), (a,b) — (®i(a—b),®(b—a)).
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c) If we put
BT\ —T\ {1}, z+~—7",
O T—T, z+—7",
9T — {1}, z+——7",
(P(g()(’][\{l}aF)—)(g()a[\er)a X xo0¥,
¢ CMF)— CMAF), x—sxot,
0" € ({1},F) — € ([,F), xr—x01d"
then, with the identifications of a) and b),
I(,(¢) :Ki(%o m\{l}vF)) — Ki(%o (I[\FvF))v b— (b)j'EINnv

Ki(9"): Ki(€ (I,F)) — Ki(¢ (I,F)), (a,b)— (a,nb),

Ki(¢"): Ki(€¢ ({1},F)) — Ki(¢ (L,F)), ar— (a)jen, -
a) Put Q; := { e ’ weE|j— 1,j[} for every j € IN,. By Proposition 3.3.3 a), for

every j € INp,
Ki(%0 (Q),F)) ~ Kiy1(F) .

Ki(¢o M\T,F)) = Kii(F)",  Ki(% (T, F)) ~ Ki(F)"

by the Product Theorem (Proposition 2.3.1 a)).
b) By Corollary 2.4.7,
K,(l]/) Kl(cg(][,F)) —>Ki((g(F7F)), (a,b)|—>(a)j€1Nn .

If we denote by
@60 (Q),F) — € (IF)

the inclusion map then
Kl‘((pj):Ki(CgO(QjaF))HKi(Cg(]LF))a b’—>(07b)

by Proposition 3.3.3 b). By Proposition 3.3.3 a) and Corollary 2.3.2,

Ki(9) : Ki(%0 (M\T,F)) — Ki(¢ (I, F)), (b)) jen, — (07 Y, bj) :

JENn
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In order to prove the last assertion we define a’,b’,a”,b" € K; (F) by
(d,b'):=§(1,0), (d",b"):=8(0,1).

From
0 — ai(l, l) — (al,b/)—i—(a//,b//) — (a/—i—a//,b/—l—b//)

we getd’ = —a’ and b” = —b'. There are j,k € Z such that §;(j,k) = (1,—1). Then
(1,=1) = 8i(j,k) = (jd', jb') — (ka' . kb") = ((j — k)d, (j — k)b') ,
(j—kd =1, (j—k)b =—1.
Thus o’ is invertible in the ring K; (F) and a'~! = j — k. It follows b’ = —a’. If we put
®:K;(F)— K;(F), cr——dc
then ®; is an automorphism and for all a,b € K; (F),
8i(a,b) = (d'a,—d'a) — (d'b,—d'b) = (d'(a—b),d (b—a)) = (P;i(a—b),P;(b—a)) .
c) The assertions for K;(¢) and K;(¢") follow from the Product Theorem (Proposition
23.1a). If @' : 6 @\ {1},F) — € (I, F) denotes the inclusion map and
v CMF)— ¢ ({1},F), x—x|{l}
then the diagram
Ki(% @\ (1.F) =% ki @F) Y% k(@ (1),F))
Ko)| | e | e

Ki(¢@\I',F)) —— K(¢@F)) —— Ki(%([.F))
Ki(9) Ki(w)

is commutative. Let (a,b) € K;(¢ (I, F)) and put (a’,b") := Ki(¢')(a,0). By b),
(@) jeny, = Ki(9")a = Ki(9")Ki(')(a,0) =

= Ki(y)Ki(¢")(a,0) = Ki(w)(d',b') = (d) jen, ,
Ki(¢")(0,b) = Ki(¢")Ki(¢")b = Ki(¢)Ki(¢)b = Ki(¢) (D) jen, = (0,nb)
so K;(¢')(a,b) = (a,nb). [ |
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COROLLARY 3.3.5 Ifwe put
¥:By — By, z+—7",
¥:C—C, z+—7",
v":8 — 8, z—7",
¢:%(By,F) — ¢ (B,,F), x+——>x0®,
o' 6 (C,F) — % (C,F), x—>x09,
0" € (S1,F) — 6 (S1,F), x+——xo0v”.
then K;(@) is the identity map of K;(¢ (IB,,F)) and

Ki(¢/) I{I(CKO (CaF)) HKi(CgO (CaF))v ar—r na,

Ki(9") : Ki(% (81,F)) — Ki(€ (S1,F)), (a,b) — (a,nb),

We identify the homeomorphic spaces T and IB; \ S;. By Corollary 3.2.8 ¢),
Ki(€ (S1,F)) = Ki(%¢ (B2, F)) X Ki11 (%0 (B2 \ 81, F))
and by Proposition 3.3.4 e),
Ki(¢") : Ki( (S1,F)) — Ki(€ (S1,F)), (a,b) — (a,nb).

By Corollary 2.2.2 b) and Theorem 3.1.2 a), K;(¢) is the identity map of K;(¢ (1B, F))
and
Ki(9') : Ki(6o (B2 \ 81,F)) — Ki(¢0 (B2 \ S1,F)), ar~—na. L

PROPOSITION 3.3.6 Let m,n € IN and

9 T—T, wr—w",

% :T—T, z+—7",
y:EAXTF) — FCAXLF), x+——xo(d x).
We identify K;(€ (I,F")) with K;(F') x Ki41(F') for all E-C*-algebras F' by using the
group isomorphism of Theorem 3.2.2 b). Let

a € Ki(C (X, F)) = Ki(¢ (I,€ (I,F))) = Ki( I, F)) x Kip1 (€ (I F))
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and put ay € Ki(6¢ (I, F)), a1 € Kit1(€ (I F)) such that a= (ap,a1) and a9, ai,1 € K;(F)
and ag 1, a1 € Kiv1(F) such that ag = (ao 0, ao,1) and a; = (a9, a1,1). Then
Ki(w) = ((ao,0, mnay 1), (nag,1, may o)) -
We put
9:FMF) —FCAF), x—x0dy,
¢ : M, ¢ M,F) —CMEMAF)), xr—x0d,
¢2(5(]L<5(][7F))—><5(1L<5(]LF)), xH(])ox,
By Corollary 3.3.5,
Ki(¢1)a = (ap, mar), Ki(9)ao= (aop,nao1), Kiyi(9)ai = (aio,nai)
so by Corollary 3.2.8 ¢), d),
Ki(¢2)Ki(¢1)a = (Ki(9)ao, Kir1(¢)mar) = ((aop, nao,1), (mai o, mnay 1)) .

Since ¥ = ¢, 0 ¢y,
Ki(y) = ((ao,0, mnay 1), (nag,1, maip)) . [

3.4 Some Non-orientable Compact Spaces

DEFINITION 3.4.1 We denote by P, the n-dimensional projective space, which is
obtained from 1B, by identifying o with —a for all o € 1B, with ||a|| = 1.

PROPOSITION 3.4.2 Put
Q=P \{a Py |[la]=1,0.:1=0},
Q={acQ|l|a|=1},
V6 (QF)— % (QF), x—x|Q

and denote by
(U %o (IBn—H \SnaF) — %o (.Q,F)

the inclusion map and by &; the index maps associated to the exact sequence in Mg

0 — 6o (Bus1 \ Sn, F) 25 € (Q,F) 5 6 (Q/,F) — 0.
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a) Ki (6o (Bnt1\Sn,F)) = Kiyns1 (F), Ki (60 (Q,F)) = Kixn (F), and there is an
automorphism ®; : K;, (F) — K, (F) such that
5i : Ki ((50 (Q/7F)) — I{i+1 (%0 (IBYH-I \Sn7F))7
ar— D;(a—(—1)"a) .

b) Ifnis even then 6; =0, K; (@) is injective, K; (V) is surjective, and

Kl((gO(QaF))
———— K (F) .

Ki1 (F) )
¢) Ifnis odd and for a fixed i € {0,1}

a€ki(F),2a=0=a=0

Ki(F)
2K;(F)’

then K; (y) =0, K; (60 (Q, F)) ~
Ki (@) : Ki (€0 (By1\ 8y, F)) — K; (€0 (2, F))
is the quotient map, and

8 Ki (60 (Q,F)) — Kis1 (60 (Bps1 \Su,F)), ar—2Pja.

a) By Theorem 3.2.2 a), K;(%)(R"F)) =~ Ki,(F). Since B,1; \ S, is
homeomorphic to IR™*!, Ki(6y(Bui1 \Sn,F)) = Kiyni1(F). Since ' is
homeomorphic to R”, K;(6p (Q',F)) ~ Ki1»(F). We use the notation of Proposition
3.2.9, which we mark by a bar in order to distinguish it from the present notation.
Moreover we denote by ¥ : Q — Q and ¥’ : Q' — Q' the covering maps and put

(I):‘KO(Q,F)H‘KO(Q,F), x—xo0®,
¢/:<50(Q/,F)—>‘KO(Q’,F), x—xo0d .
By the Product Theorem (Proposition 2.3.1 a)), Proposition 3.2.9 a), and Proposition 3.3.1

b),
Ki(¢): Ki (%0 (@, F)) — Ki (60 (Q.F)) , ar— (a,(=1)"a).

By the commutativity of the index maps (Axiom 1.2.8), §; = &; 0 K;(¢') so by Proposition
3.29b),

8 : Ki (60 (Q,F)) — Kis1(60 (Bys1 \Sn,F)), ar— Pia—(—1)"a).
b) and c) follow from a) and the six-term axiom (Axiom 1.2.7). [ |

118 Science Publishing Group



3.4 Some Non-orientable Compact Spaces

COROLLARY 3.4.3 We use the notation and the hypothesis of Proposition 3.4.2, take
n=1LputT:={xeP,| |x]| =1},

v € (P, F) — € ([,F), x+—x|T,

and denote by @' : 6y (1B, \ S1,F) — € (P2, F) the inclusion map and by J] the index

maps associated to the exact sequence in g
0— % (B>\S1,F) 2 % (IP,,F) - ¢ (T,F) — 0.

Then Ki (% (P2, F)) ~ Ki (F) x 7k, Ki( (U, F)) ~ K; (F) x Ki1 (F),

K; ((p/) 1 K; (%0 (IBz\sl,F)) — K; (K,' (%(IP,F))) , ar— (O,CIDia),

I(I(V/) :Ki(%(lP%F))*)Ki((g(F?F))v (a,c)l—>(a,0)7

5{2](,‘(65(1—‘,17))—>Ki+1(%0(132\81,F))7 (a,b)'—>2b. |

PROPOSITION 3.4.4 Let
9:[0,1] —T, o— ™®,

¢:CMF)— € (0,1,F), x—rx00.

If we identify K;(€¢ (I, F)) with K;(F) X K41 (F) (Theorem 3.2.2 b)) and K;(¢ ([0, 1], F))
with K;(F) (Theorem 3.1.2 a)) then

Ki(¢) : Ki(¢ (I, F)) — Ki(¢'([0,1],F)), (a,b)+—>a.
Put
¥ 00, 1[—T\ {1}, ©— ™,
o' G (M\{1},F) —> G (0,1[,F), x> xod’

and denote by
(P:%OG()?I[?F) *)‘g([()v 1]3F)7 (Pli%(]f\{l}vF) H%(][,F)

the inclusion maps. Then ¢ o ¢’ = o ¢, s0 Ki(¢) o K;(¢") = Ki(@) o Ki(¢") = 0, since ¢
factorizes through 0. Thus K;(¢)(0,b) = 0 for all b € K;1 (F).
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Put
l//%([O,l],F)—)%({0,1}7F)%F><F7 x'—>x|{071}7
v CMF)—F, x—x(1),
u:F—%{0,1,,F), x— (x,x).
Then yo¢ = oy, so K;(w)oK;(¢) = K;() o K;(y') and we get (by the above)
Ki(w)Ki(¢)(a,b) = Ki(y)Ki(9)(a,0) = Ki(u)Ki(¥')(a,0) = Ki(u)a = (a,a),

Ki(¢)(a,b) =a
for all (a,b) € Ki(F) X Ki1(F). [

DEFINITION 3.4.5 We denote by IM the Mdbius band obtained from [0,1] x [—1,1]
by identifying the points (0,8) and (1,—f) for every B € [—1,1]. We put for every j €
{_Loa 1}
M ._ ;
Y= {(,j))eM| a€c0,1]} .
PROPOSITION 3.4.6 Forevery j € {—1,0,1} put

v € (MF) — € (TMF), x—xIM.

a) T is homeomorphic tol and FIJM is homeomorphic to [0,1] for all j € {—1,1}.
b) %o (IM\F]M,F) is K-null and
Ki(o) : Ki(¢ (M, F)) — K; (¢ (10", F)) ~ Ki(F) X Kiy1 (F)
is a group isomorphism.

¢) If we identify K;(€¢ (IM,F)) with K;(F) x Ki+1(F) using the group isomorphism
Ki(wo) of b) and K; (¢ (T, F)) with K;(F) using a) (and Theorem 3.1.2 a)) then

Ki(y1) : Ki(€ (M, F)) — K; (¢ (T, F)), (a,b)—a.
d) Ifwe put @ :=(0,0)=(1,0) e M, I":= { (a,0) | & €]0,1[}, and
v:% M\ {w},F) — % ([,F), x+——x|T

then
Ki(y) : Ki(6o M\ {0}, F)) — Ki(%0 (I',F)) = Ki1 (F)

is a group isomorphism.
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e) IfT" is a finite subset of M then

v

Ki (6o (M\I',F)) ~ K1 (F)"

a) is easy to see.
b) For every s €0, 1] put
O M\TY! — MA\TG', (o, B) — (at,5B) .

By Proposition 2.4.1 (replacing there Q by M\ TPM), %, (IM\ I, F) is K-null and the
assertion follows from the Topological six-term sequence (Proposition 2.1.8 a)) and a)
(and Theorem 3.2.2 b)).

c) follows from b) and Proposition 3.4.4.
d) If @ : 6o (IM\TP,F) — 6o (IM\ {},F) denotes the inclusion map then
0—s % (M\TP,F) 25 % (M\ {0}, F) 5 6 (T,F) — 0

is an exact sequence in 2MMg. By b), 6 (IM\FgV[,F ) is K-null so by the Topological
six-term sequence (Proposition 2.1.8 a)), K;(y) is a group isomorphism. Since I is
homeomorphic to R, K; (%, (T',F)) =~ Ki+1 (F) by Theorem 3.2.2 a).

e) follows from d) and Proposition 2.4.11. [

PROPOSITION 3.4.7 Put
r=rMurM, r=rMurMur™  ”.=rMyrM,
IM/ :IM\F/ M// ':IM\F” IM/// ,:IM\F///

Let
¢ 6 (M ,F) — ¢ (IM,F),

¢": ¢ (M",F) — € (IM,F),
@' (M, F) — G (M\T}, F)

9" 6 (M, F) — G (M\IF) ,
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¢ G (M, F) —
¢ (0 F) —
z{// (r/// )
A{/// ( )
be the inclusion maps,
v €M, F)— ¢ (T',F), xr—x|I",
v € (MF)— ¢ (" F), x—xI”,
V6 (M\IYLF) — € (TN F), xr—— '™
V' G M\ F) — ¢ (I, F), x—xI"”,
v" 6 (IM"F) —>‘€(Fg\4,F) . x—x|TM,

and 8/ ,8]",8!,8!" ,8!" the index maps associated to the exact sequences in Mg

0— %o (IM,F) N % (M, F) N ¢ (I',F) —0,

0— % (M",F) 257 (M, F) L5 ¢ (I F) — 0,
0— % (IM',F) i><5(11v1\1“g‘4,F) L%(FIIM,F) —0,
0— % (IM",F) LN ¢ (M\IP'F) RN ¢ (I, F) —0,

0— % (M",F) LN (M, F) RN % (IY"F) — 0,

respectively.

a) T is homeomorphic to'lL
b) The maps
8 :Ki (¢ (TMF)) = Ki(F) — Kis1 (60 (M, F)) ,
8 1 K; (¢ (" F)) = Ki(F) x Ki1 (F) — Kis1 (60 (M",F))

are group isomorphisms.
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c) Ifwe put @, :=K;(1") o (8)~", @/ :=Ki(1")o(8/")~! (using b)) then the sequences

5!

0 —s Ki(% (M, F)) S &, (% (', F)) o Kiy1 (%0 (I, F)) — 0,

s/

0— Ki(# (M.F) “ YL K (¢ (1, F)) of Kepr (6 (M, F)) — 0
are split exact and the maps
Ki(€ (IM,F)) x Kit1 (6o (IM',F)) — K; (¢ (I, F)) ,
(a,b) — Ki(y)a+ @b,
Ki(€ (IM,F)) x Kir1 (60 (M",F)) — K; (¢ (I'",F))
(a,b) —> Ki(y")a+ @b
are group isomorphisms.
d) 8!" =0 and the sequence

0—s K (% (M", F)) %) K, (% (M F))

///)

K (% (M”,F)) ") K (% (T, F)) — 0

is exact.

a) is easy to see.

b) By Proposition 3.4.6 b), %o (IM \ FSM,F ) is K-null and the assertion follows from a),
the Topological six-term sequence (Proposition 2.1.8 b)), and Proposition 3.4.6 a) (and
Theorem 3.1.2 a), Theorem 3.2.2 b)).

c) If we put Q; := M, Q := M\ TV, and Q3 := IM’ (respectively Q3 := IM”) then
the assertion follows from the Topological triple (Proposition 2.1.11 a)).

d) By the commutativity of the index maps (Axiom 1.2.8), §/” = &/’ o K;(A""). By ¢),
Im (@} 0 8/") C ImK;(A"). Since ImK;(A"') = K; (¢ (T, F)) we get

CI>§/ o 51-'” = @;’ o 51-" o K,-()L/”) =0

Thus 8" = 8/ o @} 0 8! = 0 and the assertion follows from the six-term axiom
(Axiom 1.2.7). [ |
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DEFINITION 3.4.8 We denote by IK the Klein bottle obtained from the Mobius band M
by identifying the points (o, —1) and (a, 1) for all o € [0, 1] and put for every j € {0,1}

I ={(a,j)eK|aec[0,1]} .

PROPOSITION 3.4.9 We put K" := K\ I'K, K" := K\ (TKUTK),
v:% (K ,F) — ¢ (T, F), xr—x[[F

and denote by ¢ : 6y (K", F) — 6y (IK', F) the inclusion map and by §; the index maps

associated to the exact sequence in Mg
0— % (K", F) -5 %, (K',F) ¥ ¢ (TK,F) —0.

We use the notation of Proposition 3.4.7 (so TX =T'M and K" = IM").

a) Fg( and FIIK are homeomorphic to'll.

b) The map
(8/) " Ki (6o (M, F)) — Kip1 (€ (T, F)) = Ki(F) x Kiy1 (F)
is a group isomorphism.

c) If we identify K;(€¢ (T, F)) with K;(F) x Kiy1 (F) using a) and Theorem 3.2.2 b)
and Ki1(6o (K", F)) with K;(F) x Kiy1(F) using b) then

8 : K (¢ (T F)) — Kir1 (60 (K",F)), (a,b) —> (a,2b).

d) If §; is injective then  is K-null and K;(6y (K, F)) =~ 2%((?) and if we denote by

the quotient map then

Ki (9):Ki (%) (K", F)) — K (¢o (K ,F)), (a,b)—> Pib.

a) is easy to see.
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b) follows from Proposition 3.4.7 b).

¢) We denote by
9 :M\I'M — K

the covering map, by
o .7 —TrK

the map defined by ¥, and put
¢ : %o (K, F) — G (M\TQLF), x+——xo00,
¢ 6 (T F) — % (T",F), x+——xo0d.
With the identifications of I"”” and '™ withT (by a) and Proposition 3.4.7 a)),
O T TR 2.
By the commutativity of the index maps (Axiom 1.2.8) the diagrams

Ki(G " F)) S kKL F) Y k(¢ (DK F))

|- | w0 | w01

Ki(6o(M",F)) —— Ki(%(IM"),F)) —— Ki(¢(I"",F))
Ki(9") Ki(9")

are commutative. By Proposition 3.3.4 ¢),
Ki(¢"): K; (¢ (T, F)) — K; (¢ (T",F)), (a,b)— (a,2b).

By b),
8§ :Ki (¢ (T, F)) — Kis1 (%0 (K", F)), (a,b)—> (a,.2b).

d) By the six-term axiom (Axiom 1.2.7), y is K-null. The other assertions follow from

¢) and the six-term axiom (Axiom 1.2.7). [ |
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3.5 Pasting Locally Compact Spaces

PROPOSITION 3.5.1 Let Q1,Q, be locally compact spaces, I'1 and I'y closed sets of
Qi and Q», respectively, ¥ : ' — Ty a homeomorphism, Q' the topological sum of
Qi \T'y and Q; \ Ty, Q the locally compact space obtained from the topological sum of
Q| and Q, by identifying the points ® and V(o) for all @ € T'y, T the closed set of Q
corresponding to the identified Ty and T (so Q\T' =Q/), ¢ : 65 (Q\[,F) — 6 (Q, F)

the inclusion map,
v %6 (QF)—%T,F), x—x|[,
and &; the index maps associated to the exact sequence in Mg
0— % (Q\T,F) -2 % (. F) -5 % (T,F) — 0.
Let J :={1,2} and for every j € J let
©; 6 (Q\T'j,F) — 6 (Qj,F),
060 (Q\Tj,F) — 6 (Q,F) ,
@} 6 (Qj\T},F) — € (Q,F)
be the inclusion maps,
V16 (Q;,F) — %6 (Tj,F), x— x|},
Vi1 6 (QF) — 6 (Q\T),F), x—x|(Q;\T)),
and §; ; the index maps associated to the exact sequence in Mg

OH%O(Q‘]A\FJ‘?F) ﬂ><€0(§2J'7F) ﬁﬂfo(l“j,F) —>O
a) 8j; = Kit1(y)}) 0 ; for every j € J and
8 = Ki1(91) 0 81+ Kir1(93) 0 82, -

b) Assume 6y (Q1,F) K-null.

b1) 81;: Ki(6o (', F)) — Kit1(6o (1 \I'1,F)) is a group isomorphism.
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by) O is injective.

b3) yis K-null.

bs) Ki(¢)) : Ki(6o (Q2\I'2,F)) — Ki(60 (Q,F)) is a group isomorphism.
bs) If we put

;= Ki(95) o Ki(93) ' 1 Ki(G0 (QF)) — K; (60 (X, F))
then the map
Kit1(6o (T, F)) x Ki(60 (Q,F)) — Ki (¢0 (2, F)) ,

(a,b) — Giy1a+Dib
is a group isomorphism.

be) If also 6y (Q2,F) is K-null then
Ki(¢0 (Q,F)) = Kiy1(%0 (I, F))
K;i (60 (@ F)) ~ Kiy1(%o (T, F))*.
a) follows from Proposition 2.3.7 a), since IVJ’-’ of this Proposition is the identity map in
the present case.
by) follows from the Topological six-term sequence (Proposition 2.1.8 a)).

by) Leta € Ki(%o (', F)) such that §;a = 0. By a), 6; ja = Ki+1(y])8a = 0and by b;),
a=0.

b3) follows from b;) and the six-term axiom (Axiom 1.2.7).

bs4) and bs) follow from b3) and Proposition 2.3.7 ¢}), ¢z).

bg) follows from by), b4), and the Product Theorem (Proposition 2.3.1 a)). [ |
COROLLARY 3.5.2 Let T be alocally compact space, (Q;) jcj a nonempty finite family
of locally compact spaces such that €y (2, F) is K-null for every j € J, and for every

je€J let T'j be a closed set of Qj and ¥; :T' — I'j a homeomorphism. Let Q' the
topological sum of the family (Q;\T';) s, and Q the locally compact space obtained
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from the topological sum of the family (Qj) ey by identifying for every @ € T all the
points O;(®) (j € J). Then

Ki(60 (Q,F)) ~ K11 (6o (T,F)) ",
K; (60 (Q,F)) = Ki(%0 (Q,F)) x Ki1 (o (T,F)) = K1 (o (T, F)) <.
We prove the Corollary by induction with respect to CardJ. For CardJ € {1,2} the
assertion follows from Proposition 3.5.1 b;),bs),bg). Let k € J, assume the assertion

holds for J' := J\ {k}, and denote by Q" the topological sum of the family (Q;\I';) e
By Proposition 3.5.1 bs),bs) and the induction hypothesis,

K,’(CKO (Q,F)) ~ K; (Cgo (Q//,F)> ~ KH»I(%O (F7F))Cardjfl 7

Ki (60 (@, F)) = Kis1(%o (T, F)) x K; (60 (Q",F)) ~ K1 (Go(T,F))Y . A

COROLLARY 3.5.3 Let m,n € IN,
Iyi={aeB,| o =1,0,>0}.T_=={aeB,| |a| =1 a <0},

and Q the locally compact space obtained from the topological sum of the family (1B, \
I'_) jen,, by identifying all the T"y. Then

Ki(€ (Q.F)) ~ Kin(F)" " .
By Proposition 2.4.1, % (B, \ ', F) is null-homotopic and so K-null. Forn > 1, '}
is homeomorphic to IR"~! so by Theorem 3.2.2 a),
Ki(¢o(T'+,F)) ~ Kisn—1(F)
and this relation obviously holds also for n = 1. Then by Corollary 3.5.2,
Ki(Go(Q,F)) ~ Ko (F)"™ 1. [ |

Remark. The above result can be deduced also from Example 2.4.9 by using
Proposition 1.5.11 d).

128 Science Publishing Group



3.5 Pasting Locally Compact Spaces

COROLLARY 3.5.4 Let Q',Q" be locally compact spaces, @' € Q', " € Q", and Q
the locally compact space obtained from the topological sum of Q' and Q" by identifying
' and &". If 6y (Q",F) is K-null then

Ki (60 (Q,F)) = K; (60 (' \{'},F)) .
The assertion follows from Proposition 3.5.1 by). [ |

PROPOSITION 3.5.5 Let Q',Q" be compact spaces, @' € Q', 0" € Q", and Q the
compact space obtained by identifying the points @' and @" in the topological sum of Q'
and Q. Then

Ki(€ (Q,F)) = K;: (60 (Q\ Q' ,F)) xK; (¢ (¥,F)) .

Let ¢ : 60 (Q\ Q' ,F) — € (Q, F) be the inclusion map and
Vi E(QF)—C(QF), xr—xlQ.
We put for every x € € (', F),

x(w) if oeQ
x(wp) if weQ’

b

Ax:Q— F, a)»—>{

where @y € Q denotes the point corresponding to the identified points @' and @”. Then
/ ¢ Y, /
0— % (Q\Q,F) —C(Q,F) 26 (Q,F) —0

is a split exact sequence in g and the assertion follows from the split exact axiom
(Axiom 1.2.3). [ |

PROPOSITION 3.5.6 Let (Q;) jem, be a family of compact spaces and for every j € IN,
let w;, (u; be distinct points of Q;. If Q denotes the compact space obtained from the
topological sum of the family (Q;) jei, by identifying a);- with @11 for all j € IN,_| then

Ki(€ (Q.F)) ~ Ki(F) < [T Ki(o (@ \ {ay}.F)) .
=1
If (kj) je, is a family in IN, Q; = Sy, for every j € Ny, and

p:=Card { j€IN, | kjis even}, g:=Card { j €N, | k;is odd }
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then
Ki(€ (Q,F)) ~ K;(F)"*!' x K; 11 (F)? .

We put Q,, := Q and prove the assertion by induction with respect to n € IN. For n = 1
the assertion follows from the Alexandroff K-theorem (Theorem 2.2.1 a)). Assume the

assertion hods for an n € IN. By Proposition 3.5.5 and the induction hypothesis,
K; (€ (Qur1,F)) = Ki (€0 Qi1 \ Q. F)) X K;i (€ (@, F)) =
~ Ki(60 (Qur1 \{on1},F)) X Ki (6 (Qu, F)) =
~ K6 (@it \ {@ni1},F) % Ki(F) ]f[lm% @\ (0}, F) =

n+1

~ K;i(F) x HlKi(‘fo (@ \ {w},F)),
=

which finishes the inductive proof. The last assertion follows now from Theorem 3.2.2 a),
since Sy \ {®;} is homeomorphic to RN |

PROPOSITION 3.5.7 Let Q1,Q, be locally compact spaces such that the
E—C x —algebra 6y(Q,F) is K-null, T a compact set of Qi, and & : T — Qy a
continuous map. We denote by Q the locally compact space obtained from the

topological sum of Q1 and Q, by identifying the points ® and () for all ® € T.

a) If
(p:%(Ql\F,F) —)C&)(Q,F)

denotes the inclusion map then
Ki(@) : Ki(%0 (Q1\T', F)) — Ki(%0 (2, F))
is a group isomorphism. If in addition Q € Y or Q \T € Y then
QQIN\TeT, p(Q) =p(Qi\T), ¢(Q) =¢(Q\T), Qr = (i \T)r.
b) If Q* denotes the Alexandroff compactification of Q then

K,((g (Q*,F)) ~ K,(F) X K,’((go (Q] \F,F)) .
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a) If we put
WZ%@(Q,F) —)CfQ(QQ,F) s xl—>x‘Q2

then
0 — % (Q\T,F) -5 6 (Q,F) -5 6o (Q,F) — 0

is an exact sequence in Mg . Since 6y (o, F) is K-null, the assertion follows from the

Topological six-term sequence (Proposition 2.1.8 c)).

b) follows from a) and Alexandroff’s K-theorem (Theorem 2.2.1 a)). [ |

COROLLARY 3.5.8 Let (Q;)jcs be a finite family of locally compact spaces, ®; € Q;
for all j € J, and Q the locally compact space obtained from the topological sum of the
family (Q;) jes by identifying the points @; for all j € J.

a) Ifthere is a jo € J such that 6 (QjO,F) is K-null then

K6 (Q.F)~ [] K% (Q\{w},F)).
JjeN{o}

b) If Qj:=0,1[forall j € J and n:= CardJ then

Ki(60 (Q,F)) ~ Kip1 (F)" "

c) Let jo € J and Qj, := [0, 1[. If (k;) jey\jo) is a family in IN,
p:=Card { j€J\{jo} | kjiseven},
q:=Card { j€J\{jo} | kjisodd },
and Qj := Sy, for every j € J\ jo then
Ki(%0 (Q,F)) =~ Ki(F)’ xKi11(F)?.
a) Let €' be the locally compact space obtained from the topological sum of the family
i)fiy by identifying the points @; for all j € Jjo} and let @ denote the point
Q) {jo) by identifying th i ; for all j € J\{j dlet @ d h i

obtained by this identification. If we replace in Proposition 3.5.7 ; by Q', Q, by Q;, T’
by @, and take ¥(®) := w;, then we get

Ki(ch(QaF)) ~K; (%0 (Q/\{d)}vF)) .
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Q'\ {®@} is the topological sum of the family (Q;\ {®;});es (i} S0 by the Product
Theorem (Proposition 2.3.1 a)),

Ki (G (@ \{a},F))~ [] Ki(%(Q;\{o},F)).

je\io}

b) follows immediately from a) since 6 ([0, 1[,F) is K-null and
Ki(% ([0,1[\{@},F)) ~ Ki11(F)
forall w € [0,1].

¢) For j € J\ {jo}. S, \ {®;} is homeomorphic to IRY and so by Theorem 3.2.2 a),
K; (‘50 (Skj \ {a)J},F>) ~ Kk, (F). Since %, ([0,1], F) is K-null, we get from a),

Ki(6o(Q,F)) ~ Ki(F)’ x K1 (F)9 . |
COROLLARY 3.5.9 Let Jy,J2,J3 be pairwise disjoint finite sets and let Q be the locally

compact space (the graph) obtained from the topological sum of [0, 1] x Jy, [0, 1[xJ>, and
10, 1[xJ3 by identifying some of the points of the set

{(07]) ‘ jEJIUJ2}U{(17j) ‘ jEJ]}.

If s denotes the number of compact connected components of Q and ro and r\ denote the

number of vertices and chords of the graph Q, respectively, then

Ki(6o (Q,F)) = K;(F)* x Ky (F)ST1 770

By the Product Theorem (Proposition 2.3.1 a)), we may assume Q connected.

Assume first there is a j € J3 such that Q contains ]0,1[x{j}. Since Q is connected,
Q =]0,1[x{j}. Thus Q is homeomorphic to IR, r; —ry = 1, and the assertion follows
from Theorem 3.2.2 a).

Assume now there is a j € J, such that Q contains [0, 1[x{j}. By Proposition 3.5.7 a),
Ki(60 (Q,F)) = Ki(€0 (Q\ ([0, 1[x{j}), F)) -

Q and Q\ ([0,1[x{j}) have the same r| — ry, so we may replace Q by Q\ ([0, 1[x{j}).

Repeating the operation, we obtain finally a locally compact space, which is the
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topological sum of a finite family (]0, 1[) jcs, and in this case the assertion follows from
the Product Theorem (Proposition 2.3.1 a)) and Theorem 3.2.2 a).

Finally assume Q compact. Then there is a j € J; such that Q contains [0,1] x {j}. By
the above and by Alexandroff’s K-theorem

Ki(€ (Q,F)) = Ki(F) x Ki(%o (Q\ {(1,)},F)) -

If ', r(), r| denote the corresponding numbers associated to @\ {(1,j)} then s’ =0, ry, =
ro— 1, and r| = r;. All the connected components of Q\ {(1,j)} satisfy the condition of

the above paragraphs, so
Ki(Go (@\{(1.1)}.F)) ~ Kit (F)1 ™0 = Kyt (F) 7170

Ki(€ (Q,F)) =~ K;(F) x Ky (F) 1770 [

COROLLARY 3.5.10 IfQ is a compact graph contained in 1B,, then
K (60 (B, \Q,F)) ~ Ki (F)' """ x Kipi (F)"
where s denotes the number of connected components of Q and rog and ry the munber of
vertices and chords of Q, respectively.
Let w be a vertex of Q. By Corollary 3.5.9 and Corollary 2.4.4 a),
Ki (%0 (Q\ {0}, F)) ~ K; (F)*' x Kiy (F)*701"
and by Theorem 3.1.2 b),
Ki (60 (B, \ Q,F)) = Kis1 (%0 (Q\ {0}, F)) = Ki (F)" " x K (F) ™. W
EXAMPLE 3.5.11 Letn € N, I a closed set of S, 0 AT # S,,, ® € T, I the compact
space obtained from T x [0,1] by identifying the points of T x 0, and Q the compact space

obtained from the topological sum of S,, and I by identifying the points of T C S,, with
the points of T x {1} C T".

a) Ki (€ (Q,F))~K;(F) X Kiyn (F) X K1 (60 (C'\ {0}, F)).
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b) If T is finite then

K; (%(Q,F)) ~ K; (F) x Kiin (F) X Kiy1 (F)Cardl"—l .

c) IfT is a graph then
K (€ (QF)) ~ K (F)™™M™0 < K, (F) x Kipy (F)* ",

where s denotes the number of connected components of Q and ry and ry denote

the number of vertices and chords of the graph T, respectively,

a) By Theorem 3.2.2 ¢1),
Ki (%0 (Su\T',F)) = Kiin (F) X Kiy1 (%0 (T\ {0}, F)) .

By Proposition 2.4.1, €, (I \ {0}, F) is K-null, where O is the point obtained from the
identification of the points of I" x {0}. By Proposition 3.5.7 a),

Ki (€0 (Q\{0},F)) =~ Ki (60 (Sn\T',F)) ,
so by Alexandroff’s K-theorem (Theorem 2.2.1 a)),

Ki (€ (Q,F)) ~ K; (F) % Kisn (F) % Kiv1 (%0 (T\ {®},F)) .

b) follows from a) and the Product Theorem (Proposition 2.3.1 a)).

¢) By Corollary 3.5.9 and Alexandroff’s K-theorem (Theorem 2.2.1 a)),
Ki(% (T, F)) ~ Ki (F) % K (F)1770
Ki (6 (D\{0},F)) ~ K (F)* ' x Kipq (F)*77

so by a),
Ki(€(Q,F)) ~ K; (F) 1770 x Ky (F) x Kiy1 (F) [

PROPOSITION 3.5.12 Let (pj)jcs be a finite family in IN, (J # 0), and for every j € J
putQ;:=8,. Let Q/ be the topological sum of the family (Q}) jes, (Tk)kek a finite family

of pairwise disjoint nonempty finite subsets of Q', T := |J Iy, and Q the compact space
kekK
obtained from Q' by identifying for every k € K the points of T'y. If Q is connected then

K; ((5 (Q,F)) ~K; (F) ~ Ki+1 (F)Cardl"7Card17CardK+1 > HKi+pj (F) ]
jeJ
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If K = 0, since Q is connected, J is a one-point set and the assertion holds by Theorem
3.2.2 b). Thus we may assume K = IN;, for some n € IN. Take k; € K and put J; :=
{jeJ| QNI #0}. We define recursively an injective family (ky)men, in K and an
increasing family (J,;)men, of subsets of J in the following way. Let m € INy, m > 1,
and assume the families were defined up to m — 1. Since Q is connected there is a k,, €
K\{ kq| g € N1 } such that T, NJ,— # 0. We put

szz{jejmjm((njrkq) #@} .
q=1

It is easy to prove by induction with respect to m € IN,, that

m
Card (U I"kq> —CardJ,,—m+1>0
q=1

for every m € IN,,. In particular,

Cardl'—CardJ —CardK+1 > 0.

For every j € J, by Proposition 2.4.11 and Theorem 3.2.2 a),
K; (%0 ('Q‘] \F7F)) ~ Ki+1 (F)Card(l"ﬁQj)—l X I(iJer (F)
so that by the Product Theorem (Proposition 2.3.1 a)),

K; (CgO (Q/ \F,F)) ~ Ki+1 (F)CardF—CardJ « HI(ierj (F) )
jeJ

For every k € K let @ be the point of Q corresponding to the unified points of I'; and put
A:={ o | k€ K}. Then by Proposition 2.4.11,

Ki (60 (Q\AF)) = K; (60 (Q\ {an, }, F)) x Kis1 (F)C 5
where ko € K. By the above and by Alexandroff’s K-theorem, since Q\ A = Q/\ T,
Ki (€ (Q,F)) x Kig1 (F)“* ! ~
~ K; (F) x K; (65 (Q\ {0k}, F)) x Kt (F)“ 5
~ Ki (F) < Ki (%) (Q\ A, F)) ~ Ki (F) < Ki (60 (' \T',F)) ~

~ Ki (F) % Ki+l (F)CardF—CardJ—CardK+1 % Ki+l (F)CardK—l « HKH»pj (F) ,
jeJ

K; ((g (Q7F)) ~K; (F) ~ Ki+l (F)Cardr7Card]7CardK+1 % HKi+pj (F) ) [
jeJ
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COROLLARY 3.5.13 Let (pj)jen, be a family in IN and for every j € IN, put Q; :=
S,;. For every j € INy let I'; and F; be disjoint nonempty finite subsets of Q; such
that kj := Card F;- = Cardl'jyy for every j € IN,_|. We denote by Q the compact space
obtained from the topological sum of the family (Q}) jew, by identifying in a bijective way
F'j withTjy forall j € IN,_y. Then

n—1
Y (kj—1) n
Ki(€ (Q.F)) ~ Ki(F) x Kict (F)7 " x [ ] K, (F) - u
j=1

PROPOSITION 3.5.14 Let Q1, Q; be locally compact spaces and for every j € {1,2}
let I'; be a compact set of Q; and ¥ : B, — I'j a homeomorphism such that A; :=
(B, \ S,—1) is an open set of Q. We denote by Q the locally compact space obtained
from the topological sum of Qi \ Ay and Qy \ Ay by identifying the points O1(®) and
% (w) forall w € S,,_. Then for every ® € S,,_1,

Ki(%0 (Q\{% (@)}, F)) ~
~ Ki (€0 (1 \T'1,F)) x Ki (60 (@ \I'2,F)) X Kiyn—1 (F) .
We use the notation of the topological triple (Proposition 2.1.11), which we mark with
a prime in order to distinguish them from the present notation. We put Q) := Q\ {0 (@)}
and take as Qg the topological sum of Q; \I'j and Q, \T'; and as Q’l the locally compact

space obtained from Q by completing first ¥;(S,_;) to ¥ (IB,) and deleting then ®. By
the Product Theorem (Proposition 2.3.1 a)),

Ki (60 (Q5,F)) = K; (60 (1 \I'1,F)) x K; (65 (9, \ T2, F)) .
Since Q) \ Q} is homeomorphic to S, \ {®}, we get by Theorem 3.2.2 ¢;),
Ky (60 (9 \ 94,F)) ~ Kooy 1 (F)
Thus by the topological triple (Proposition 2.1.11 b3)) (and Theorem 3.1.2 b)),
Ki (%0 (Q\ {81(@)}. F)) ~ K; (%0 (5. F)) ~
~ K (o (94, F)) % Ki (o (95 \ 4, F)) ~

~ K; (%0 (1 \T'1,F)) x K; (60 (2 \T2,F)) x Kiyn1(F) . u
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COROLLARY 3.5.15 If S, is an orientable compact connected surface of genus g € IN
and I is a nonempty finite subset of S, then

Ki (€ (Sg, F)) = Ki (F)**! x Kyt (F)* 71

K; (cg (Sg\F,F)) ~ K; (F)g x K1 (F)3g—2+CardF )

Assume first I' is a one-point set {@}. We prove the second assertion in this case by
induction with respect to g € IN. By Proposition 3.2.15 b), the assertion holds for g = 1.
Assume now the assertion holds for g € IN. Let A; be a closed disc of S1, A, a closed
disc of Sg, @ € Ay, and @ € A,. Sgq1 \ {®} can be obtained from the topological sum of
S1\ A1, Sg\ A2, and S; \ {w} by pasting S| \ {@} in the the boundaries of A; \ {@} and
Az \ {@}. By the induction hypothesis, since S, \ A, is homeomorphic to S, \ {®@},

K; (60 (Sg\ Mg, F)) ~ Ki (F)® x Ky (F)*7" .
By Proposition 3.5.14,
Ki (60 (Sg1 \ {0}, F)) = Ki (F)$*! x Ky (F)*72,
which finishes the inductive proof.

The first assertion follows now from Alexandroff’s K-theorem (Proposition 2.2.1 a))

and the second one from Proposition 2.4.11. |

The following Example shows a way to generalize Corollary 3.5.15.

EXAMPLE 3.5.16 Let Q be the compact space obtained from the topological sum of
S1 x 82\ A S1 x 81 XS1\A, and S, where A and A denote balls homeomorphic to
B3 by pasting S in the boundaries of A and N'. Then for every nonempty finite subset T’
of Q,

K (€ (Q,F)) =K (F)’ x Kis1 (F)°,

K; (%0 (Q\F,F)) ~ K; (F)4 x K1 (F)5+Cardr‘ ' n

Remark. Let
0o—rn%RrYE o,
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0—G6 256, 6,—0

be exact sequences in Mg and A : F; — G3 and isomorphism in 9ig . Then

H:={(x,y) e HLxGy| yy=Ayx}

is a C*-subalgebra of F> x G, containing the ideal F; X G| of F» X G,. H corresponds to
the operation of pasting /> and G, in Mg .
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Chapter 4

Some Supplementary Results

Throughout this chapter F denotes an E-C*-algebra.






4.1 Full E-C*-algebras

4.1 Full E-C*-algebras

DEFINITION 4.1.1 A full E-C*-algebra is a unital C*-algebra F for which E is a
canonical unital C*-subalgebra such that ax = xa for all (o, x) € E X F. Every full E-C*-
algebrais canonically an E-C*-algebra, the exterior multiplication being the restriction
of the interior multiplication. We denote by Cgthe category of full E-C*-algebras for
which the morphisms are the unital E-linear C*-homomorphisms. In particular € is
the category of all unital C*-algebras with unital C*-homomorphisms. A full E-C*-
subalgebra of F is a C*-subalgebra of F containing E. An isomorphism of full E-C*-
algebras is also called E-C*-isomorphism.

If HJFj is a finite family of full E-C*-algebras, J # 0, then HJFJ is afull E-C*-algebra,

JE JjE

the canonical embedding E — T[] F; being given by
jel

E—[]F, a—(a)jes.
jel

If F is a full E-C*-algebra and G a unital C*-algebra then the map
E—FRRG oa—axlg
is an injective C*-homomorphism. In particular, the E-C*-algebra F ® G has a canonical
structure of a full E-C*-algebra.
PROPOSITION 4.1.2 Let F be an E-C*-algebra. We denote by F the vector space
E X F endowed with the bilinear map
(EXF)x(ExF)—ExF, ((&,x),(B,y)) — (o, ay+ Bx+xy)
and with the involution

EXF—EXF, (a,x)— (a",x").

a) F is an involutive unital algebra with (1g,0) as unit and { (a,0) | « €E} is a

unital involutive subalgebra of F isomorphic to E.
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b) IfE and F are C*-subalgebras of a C*-algebra G then the map
0 F—ExG, (a,x)— (a,a+x)
is an injective involutive algebra homomorphism with closed image
{(o,y) EEXG|a—y€eF}.

In particular (p(I:") is a C*-subalgebra of E x G and there is a norm on F with

respect to which F is a C*-algebra.

c) There is a unique C*-norm on F making it a C*-algebra. Moreover F is a full
E-C*-algebra and F may be identified with the closed ideal

{(0,x)| x€F}

of F.  We shall always consider F endowed with the structure of a full
E-C*-algebra.

d) If F is a full E-C*-algebra then the map
F—ExF, (o,x)— (a,a+x)
is an isomorphism of E-C*-algebras with inverse

ExF—F, (o,x)— (0,x—a).

e) If E =C then F is the unitization F of F.

a) is easy to verify.

b) Only the assertion that the image of ¢ is closed needs a proof. Let (&,x) € @(F).

There are sequences (0, )neN and (X, )qeN in E and F, respectively, such that

lim (o, o0, +x,) = (@, x) .
n—yoo

It follows
a=limo, €E, x—a=limx,€F, (a,x)=¢(a,x—a)co(F).

n—oo n—oo

Thus @(F) is closed.
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c) Let Q be the spectrum of E and F the unitization of F. Then E and F are C*-
subalgebras of the C*-algebra ¢ (Q, F ) and the assertion follows from b).

d) follows from c) and b).
e) is obvious. |
EXAMPLE 4.1.3 Let F be a commutative E-C*-algebra.
a) F is commutative. We denote by Qp, Qp, and Qp the spectra of E, F, and F,
respectively.
b) Qp is homeomorphic to an open set Q' of Q. such that F ~ 6, (',T).
¢) There is a unique surjective continuous map ¥ : Qp — Qg such that if we put
¢:E~%(QpC)—F~%(QrC), ar— aod

then ¢ is an injective continuous C*-homomorphism (so we may identify E with

¢(E)).
d) The restriction of © to Qp \ Q' is a homeomorphism.

e) If F is unital then Q is homeomorphic to the topological sum of Qr and Q.

a) is easy to see.

b) follows from the fact that F may be identified with a closed ideal of F
(Proposition 4.1.2 ¢)).

¢) is proved in [1] Proposition 4.1.2.15.

d) Let w € Qf and put

v

o:F—TC, (o,x)— a(o).

Then @' € Q;\ Q' and ¥ (@) = @, so ¥|(Q; \ Q') is surjective.
Let o, € Qp \ Q, ) # @,. There is an (o, x) € F with

<(OC,)C),601> # <(Ot,x),(1)2> :
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Since ((¢t,x), w;) = (o, ;) for every j € {1,2}, ¥|(Q; \ Q') is injective.
e) follows from d) since in this case ' is clopen. [
Remark. The above d) may be seen as a kind of generalization of Alexandroff’s
compactification.
DEFINITION 4.1.4 We put for every E-C*-algebra F
F F—F, x—(0,x),
af F—E, (a,x)—a,

AMPE—F, a— (a,0),

of . =AFont.

If E = C then

=17, e =n", A =AF.

i
Il
=]

All these maps are E-linear C*-homomorphisms,
afoif =0, af o AF =idg, at ool =1t

¥ and AT are injective, #¥, A¥, and o are unital, and

F

F T
0—>FL—>FEE—>O

is a split exact sequence in Mg .

PROPOSITION 4.1.5

a) If F L Fisa morphism in 9N g then the map
@:F—F, (o,x)— (a,ox)

is an involutive unital algebra homomorphism, injective or surjective if ¢ is so. If

F = F' and if ¢ is the identity map then Q is also the identity map.
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b) Let F\,F>,F3 be E-C*-algebras and let ¢ : F| — F> and y : F, — F3 be E-linear
C*-homomorphisms. Then Wyo @ = o . [ |

Remark. If E =T then ¢ = §.
EXAMPLE 4.1.6 Let F be a full E-C*-algebraand F' a closed ideal of F.

a) F' endowed with the exterior multiplication
ExF —F' (a,x)— ox

is an E-C*-algebra.

b) The map
F' — EXxF, (o,x)— (o, 0+x)

is an injective E-linear C*-homomorphism with image

{(,x) EExF|a—xeF'}.

c) Cgis a full subcategory of Mg.
PROPOSITION 4.1.7 Let F be a full E-C*-algebra and J a finite set.

a) F/ = F®1%(J) endowed with the maps
FxF'—F (x,&)— (x§))jer
FJXF—>FJ, (é,x)»—>(§jx)jej,

F'xF —F, (&n)— Y. nj&
JEJ

is a unital Hilbert F-module ([1] Proposition 5.6.4.2 c)).

b) Let £(F’) be the Banach space of operators on F’. The set £r(F’) of
adjointable operators on F’ is a Banach subspace of £ (F’). Zr(F’) endowed
with the restriction of the norm of £ (F’) it is a full E-C*-algebra ([1] Theorem
5.6.1.11 d), [1] Proposition 5.6.1.8 g),h)). [ |
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PROPOSITION 4.1.8 For every E-C*-algebra F the sequence
Ki(1") = ‘*Ki(nF)
Ki(F) x(2r) Ki(E) —0

7

0 — Ki(F)
is split exact and the map
K (F)xK;(E) — K; (F), (a,b)—K; (1) a+K; (AF)b

is a group isomorphism.

Since the sequence in Mg
F o
0—F —F,rE—0
—

is split exact the assertion follows from the split exact axiom (Axiom 1.2.3). [
COROLLARY 4.1.9 Let G be a C*-algebra.

a) The sequence in Mg

F @id > LF@MQ
0—FR6G—5%F®G iFou, EQG—0
Meidg.

is split exact.

b) The sequence

o K; (" widg)
Ki(L ®ldg) v _
0 — Ki(F ® G) ———= K; (F ® G) x;(3Fsiag) Ki(E®G) — 0

is split exact and the map
K/(E®G)xK{(F®G) — K; (F®G) ,
(a,b) — K; (A" @idg) a+K; (1" @idg) b
is a group isomorphism.

¢) Let F % F' be a morphism in Mg and G~ G' a morphism in Me. If we identify
the isomorphic groups of b) then

Ki(¢oy) K (F®G) — K (FF®G),
(a,b) — (Ki(idp @ y)a,K; (¢ @ y)b)

is a group isomorphism.
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a) follows from Proposition 1.4.8 a).
b) follows from a) and the split exact axiom (Axiom 1.2.3).

c) follows from b) and the commutativity of the following diagram:

F®id, y AF @id,
FoG 2% pec &2% ExG
<p®wl ¢®Wl lidE®V/ . [
FFeG — F’@G’ «———— E®G

lF/®idG/ AFIGZ)idG/

COROLLARY 4.1.10 Let F 25 F' and F % F' be morphisms in 9. If F is K-null then
Ki (61) = Ki (62).
By Proposition 4.1.8, the map
K (F)xK;(E) — K; (F), (a,b)— K (1")a+K; (A")b

is a group isomorphism. Since F is K-null, K; (A¥') is a group isomorphism. We get from

$roAf =g 0AF,

Ki(61)oki (AT) =Ki (§2) oKi (AT),  Ki (1) =Ki () - u

4.2 Continuity and Stability

AXIOM 4.2.1 (Continuity axiom) If {(F;)jes, (®j)jker} is an inductive system in
Mg such that @y are injective for all j,k € J, k < j, and if {F, (@;)jecs} denotes its
inductive limit in Mg then {K; (F), (Ki (@;))jes} is the inductive limit of the inductive
system {(Ki (F})) jes, (Ki (@jx))jkes }-

PROPOSITION 4.2.2 If Q is a totally disconnected compact space then

K{(€(Q,F)) ~ { ac Ki(F)® ’ a(Q) is ﬁnite} .
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Let E be the set of clopen partitions of Q ordered by fineness and for every ® :=
(Q))jes € Eand x € FO put

$:Q—F, or—x(j) for o€Q;.

Then the map
F® — €(QF), x—3%

is an injective E-C*-homomorphism for every ® € E and € (Q, F) is isomorphic to the
corresponding inductive limit in Mg of (F®)gcz. By Lemma 2.1.4 ¢), K;(F®) ~ K;(F)®

for every ® € Z and the assertion follows from the continuity axiom (Axiom 4.2.1). W

PROPOSITION 4.2.3 Let & be an ordinal number, (Qq )y ¢ a family of path connected,
non-compact, locally compact spaces, and @y € Qy for every n < &. We denote by Q8
the locally compact space obtained by endowing the disjoint union of the family of sets
(Qn)n<e with the topology for which a subset U of QF is open if it has the following

properties:

1) QyNU is open for every n < &.

2) If wy € U for some n < & and if there is a § <n with 1 = §+ 1 then Q \U is

compact.
3) If oy € U for some limit ordinal number 1 < & then there is a { < 1 such that
UC<§/<77 Q;/ cU.

IFKi(Go (Qn, F)) =0 for all n < £ then K; (% (Qé‘ F)) —0.

The assertion is trivial for & = 0. We prove the general case by transfinite induction.
If £ =n+1 for some n < & for which the assertion holds then by Corollary 3.5.4, the
assertion holds also for &. If & is a limit ordinal number and the assertion holds for every
1 < & then by the continuity axiom (Axiom 4.2.1) the assertion holds also for £ since
%o (Q‘g JF ) is the inductive limit of the inductive system { €, (Q",F) | n <& 1. |

Remark. If Q; = [0, 1] for every n < & then Qf is “one-dimensional”.
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LEMMA 4.2.4 Let {(F})jcs, (Qji)jkes} be an inductive system in Mg, {F, (@Q;)jes } its
inductive limit in Mg, G an E-C*-algebra, and for every j € J an injective morphism
Y : F; — G in Mg such that W; = Yo @ ; for all j.k € J, j < k. Then the morphism
Y F — G in Mg such that y; = yo @; for all j.k € J, j <k ([5] Theorem L.2.1) is

injective.

For j € Jand x € F;,

@il < lxll = llwiel] = llweix]| < [l
so y preserves the norms on @;(F;). Since |J ¢;(F;) is dense in F, y preserves the
jeJ

norms, i.e. it is injective. |

PROPOSITION 4.2.5 Let {(G})jcs, (Qjk)jkes} be an inductive system in Mg such that
@jk are injective for all j,k € J, k < j, and let {G, (@;)jes} be its inductive limit in
Me. If {F', (y))jes} denotes the inductive limit in Mg of the inductive system {(F ®
Gj)jes, (idrp @ @j i) jres} in Meand y : F' — F @ G denotes the morphism in Mg such
that yo y; =idr @ @; for all j € J ([5] Theorem L.2.1) then y is an isomorphism.

By [5] Corollary T.5.19, idr ® ¢; are injective for all j € J. By Lemma 4.2.4, y is
injective. Since
F® (U G,-) Clmy,
JjeJ

V is surjective and so it is an isomorphism. |

COROLLARY 4.2.6 If {(G))jcs, (®j)jkes} is an inductive system in Mg such that
Qjk are injective for all j,k € J, k < j, and if {G, (@;)jes} is its inductive limit in
Mg then {K; (F ®G), (K; (idr @ @;j))jes} is the inductive limit of the inductive system
{(Ki (F ®G)))jes, (Ki (idp @ @jx))jxes}. In particular if G; is Y-null for every j € J
then G is also Y-null.

By [5] Corollary T.5.19, idr ® @} are injective for all j,k € J, k < j. By Proposition
4.2.5, {F ® G, (idr ® @;)jcs} may be identified with the inductive limit in 9t of the
inductive system {(F ® G;)jes, (idr @ Qjx)jres} in Mg and the assertion follows from
the continuity axiom (Axiom 4.2.1). [ |
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COROLLARY 4.2.7 Let (G;)jej be an infinite family in Y1, J the set of nonempty finite
subsets of J ordered by inclusion, and for all K,L € J, K C L, put Gk := @ G, and
JjeK

(p(L,K):G[(—>GL, ®Xj»—>®yj,
jek jeL

fx i jek
YT 1g, i jeL\K

where

Then {(Gk)key, (9(L,K))k ez} is an inductive system in Mg and its limit belongs to
1.

We denote by {G, (¢(K))key} the above inductive limit. By Proposition 1.6.5, Gk €
Y, for all K € J so by Corollary 4.2.6, p(G) = 1, ¢(G) = 0. Let F % F’ be a morphism
in Mg and let K € J. Then the diagram

¢ . .
F 2 poGe ) peg

% ld@idc,( lq‘)@idg

F — s Fl9Gy ——— F'®G
¢GK,F’ id[,~/®(P(K)

is commutative. Since

06.r = (idr @ (K)) 0 oGy.F » Og.r = (idpr @ 9(K)) 0 O, 7,

the diagrams

9G.F Ki(o6r)
T

F —— F®G K; (F) K (F®G)
o| [oeita o | | Kitwside)
Fl —— F'®G Ki(F') —— K;(F'®G)
¢G,F’ Ki(¢G,F’)
are commutative and so G € Y. [ |

COROLLARY 4.2.8 Let {(G))jcs, (Qjk)jkes} be an inductive system in Mg such that
O, j are injective for all j.k € J, j <k, and let {G, (@;) cs} be its inductive limit. We
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assume that for all j.k € J, j <k,
G;,Gy €T, D, G, r =Ki (idr @ @1 ) o®D;G; F -
Then
GeY, ;G r =K (idr ® 9j) 0®@; G, F

forall jeJ.

By Corollary 4.2.6, {K;(F ®G), (K;(idr ® ¢;))jes} is the inductive limit of the
inductive system {(K; (F ® G;))jes, (K (idr ® @jx))jkes}- By the hypothesis of the
Corollary,

K (idp @ @ j) 1 Ki (F®G;) — K; (F ® Gy)

is a group isomorphism for all j,k € J, j <k, so

K;(idr ® ;) : K; (F® G;) — K; (F ® G)
is also a group isomorphism for all j € J. Let F E) F' be a morphism in M. The
assertion follows from the commutativity of the diagram

. (G> . (G)
Ki (F)PG) x Ky (F)2(G) SO ki (0)77 .

cDLGj.FJ/ q>i,Gj.F’ l

Ki(9®G;
Ki(idp@q)j)l K[(idF’®(p.f)J/
Ki(9®idg)
where A 1= K; (F’)P(Gj) x K1 (F/)q(Gj)‘ -

DEFINITION 4.2.9 We denote for every family (¥;) je; of additive groups by Y. ¥; its
jeJ
direct sum i.e.

Z%:{aen%

= GeT

{j€J|aj7é0}isﬁnite}.
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PROPOSITION 4.2.10 If (F})jec; is a family of E-C*-algebras and F is its C*-direct
sum ([1] Example 4.1.1.6) then

~ Y Ki(F))
je

In particular, the C*-direct sum of a family of K-null E-C*-algebras is K-null.

If J is finite then the assertion follows from Proposition 1.3.3. The general case follows

now from the continuity (Axiom 4.2.1). [ |

COROLLARY 4.2.11 If (Q;)jes is a family of locally compact spaces and Q is its

topological sum then

Ki(0 (Q,F)) =~ Y Ki(€(Q
JjeJ

x{aenKi(%o(Qj,F)) {jeJ] aj#O}isﬁnite} :

=y

By Proposition 4.2.5, 6y (Q, F) is the direct sum of the family (6, (;,F)) jes and the

assertion follows from Proposition 4.2.10. |

PROPOSITION 4.2.12 [f & is an ordinal number endowed with its usual topology then
Ki(¢0(8.F))~ ¥ Ki(F).
n<g

We prove the assertion by transfinite induction. If £ is not a limit ordinal number then
the assertion follows from Corollary 2.3.4 a). Assume ¢ is a limit ordinal number and
foralln < ¢ <& let ¢y , : 6o (n,F) — %o (&, F) be the inclusion map. By Proposition
4.2.5, %o (&, F) may be identified with the inductive limit in 91 of the inductive system
{(G0 (N, F))y<g, (9cn)n<c<e} in Mg . Thus the assertion follows from the continuity
axiom (Axiom 4.2.1) and the induction hypothesis. |

DEFINITION 4.2.13 We denote for every n € IN by M(n) the C*-algebra of

n X n-matrices with entries in C.
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AXIOM 4.2.14 (Stability axiom) There is an h € IN, h # 1, such that
M(h)eY,  pM(h)=1,  qM(h)=0,

D; pyn)F = Ki(idr @ 9) o Pig F,

where
a 0 0
0 0 0
o:C—M0h), a— .
0 0 0

PROPOSITION 4.2.15 We put for all j,k € IN*, j <k,

0 0
) o o0 --- 0

O M) — M(H), x+— .
0 0 0

a) Forall j € N,
M(W)eY,  pMMH)=1,  qMH))=0,
D y(niyr = Ki (idr @ @) oPigr -
b) Forall j,k € IN*, j <k,
Dy, r = Ki (idr @ @ ) 0P pyiniy
and K; (idp ® (pk_,j) is a group isomorphism.
a) We prove the assertion by induction with respect to j € IN. For j =1 the assertion is

exactly the Stability axiom (Axiom 4.2.14). Let j > 1 and assume the assertion holds for
j — 1. With the notation of Proposition 1.5.4 b),

(idremmn) © O(j-1),0) © 9e.Famn) © (idF @ 10) = idr @ Qj0,

so by the above and by the induction hypothesis,

K; (idp & (p];o) o=
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= Ki (idpamn @ 9(j-1).0) © Picreomn © Ki (idr @ ¢10) o @ig r =

= Pim(ni-1) Feomn) © Pimn).F -
Thus
K; (idr ® ¢;0) o®icr : Ki (F) — K; (FRM(h'))
is a group isomorphism. Let g F’ be a morphism in 9Mg . Since the diagram

Ki(idr9j0)
—_——

K(F) 25 K (FoM(l) K; (F@M(W))

Ki(q))l lKi(d’@"dM(l)) lKi<¢®idM(hj))
Ki(F) —— K (FFoM(1)) ———— K (FFeM(h/))
D¢t K;i(idp 29(j,0))

is commutative, we may take

D; pwiy,r = Ki (idr @ @j0) oPig,F -

b) By a),
K; (idr @ Q1) © Py gy r = Ki (idp @ @x,j) oK (idp @ 9j0) 0 ®ipp =
= K; (idr @ @0) = Py praiy - u

THEOREM 4.2.16 Let H be an infinite-dimensional Hilbert space and ¥ (H) the C*-

algebra of compact operators on H. Then

D; v (m)r = Ki(idr @ @) o @i,

where ¢ : C — ¥ (H) is an inclusion map.

Let = be the set of subspaces of H of dimension 4/ for some j € IN* ordered by

—
)

inclusion and for every K € E let mx be the orthogonal projection of H on K and
Gk := g% (H)mg. We denote for all K,L € E, K C L, by

(PL,K:GK—>GL7 (pKZGK—><%/(H)
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the inclusion maps. Then {(Gk)kez, (Qrx)r kez} is an inductive system in Mg and
{# (H),(9k)kez} is its inductive limit. By Proposition 4.2.15, for K,L € E, K C L,

GK7GL€Ya p(GK):p(GL):la q(GK):q(GL):07

D, r=K;(idr @ Orx)oPiGy.F,

and K; (idr ® @r k) is a group isomorphism. By Corollary 4.2.8, for K € &,
H(H) €T, D; v (m),r = Ki (idr @ 9x) 0 Di Gy F

sop(A(H)) =1, q(H (H)) = 0. o

Science Publishing Group 155






Part 11

Projective K-theory







Throughout this part we use the following notation: 7 is a group, 1 is its neutral
element, K is the complex Hilbert space {*(T), (T,)se is an increasing sequence of
finite subgroups of T the union of which is T, Tp := {1}, E is a unital commutative
C*-algebra, and f is a Schur E-function for 7' (Definition 5.0.1).

In the usual K-theory the orthogonal projections (used for Ky) and the unitaries (used
for K;) are identified with elements of the square matrices, which is not a very elegant
procedure from the mathematical point of view, but is justified as a very efficient
pragmatic solution. It seems to us that in the present more complicated construction the
danger of confusion produced by these identifications is greater and we decided to
separate these three domains. Unfortunately this separation complicates the presentation
and the notation. Moreover, we also do identifications! In general the stability does not
hold. We present in Theorem 6.3.3 (as an example) some strong conditions under which
stability holds for K.

For projective representations of groups we use [2] (but the groups will be finite here)
and for the K-theory we use [4], the construction of which we follow step by step. In the
sequel we give a list of notation used in this Part.

1) We put for every involutive algebra F,
PrF:={PcF|P=P =P}
and forevery A C F,
A ={xeF|ycA=xy=yx}.
2) We denote for every unital involutive algebra F by 1 its unit and set

UnF:={UcF|UU*=UU=1;}.

3) If F is a unital C*-algebra and U,V € Un F then we denote by U ~, V the assertion
U and V are homotopic in Un F and put

UnoF::{UEUnF|U~h1p}.

Moreover GL(F) denotes the group of invertible elements of F and GLo(F) the
elements of GL(F') which are homotopic to 1r in GL(F).



4) If F is a unital C*-algebra and G is a unital C*-subalgebra of F' then we denote by
UngF the set of elements of Un F which are homotopic to an element of Un G
in Un F and by GLg(F) the set of elements of GL(F) which are homotopic to an
element of GL(G) in GL(F).

5) If Qis a topological space, F a C*-algebra, and A C F then we put

C(QA) = {XcC(QF) | 0cQ=X(w)cA}.

6) Hilbert E-C*-algebra ([1] Definition 5.6.1.4).

7) % (H) ([1] Definition 5.6.1.7).
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DEFINITION 5.0.1 Let S be a group and let 1 be its neutral element. A Schur E-
function for S is a map
f:8xS—UnE

such that f(1,1) = 1g and

f(rs)f(rs,t) = f(rst)f(s,1)
for all r,s,# € T. We denote by .Z (S, E) the set of Schur E-functions for S.

Schur functions are also called normalized factor set or multiplier or two-co-cycle (for

S with values in Un E) in the literature.

DEFINITION 5.0.2 Let F be an full E-C*-algebraand n € IN*. We put for every ¢ € T,,,
EcF"=F®I*(T,),and x € F,

VE=VIE T, —F, s— ft,r 's)E(t ),

x®idg : FT" — FT", ‘5 — (ng)seT,ﬁ

so we have
(xQidg)\V,E T, — F, s— f(t,t 7 s)xE (™ s) .
We define

F, ::{ Y (X ®idk)V;

teT,

(Xt)tETn E FTn } .

fF-%Gisa morphism in €x then we put

Gn:Fn— Gy, X— Y ((0X,) ®id, )V, .

teT,

F, is a full E-C*-subalgebra of % (F*) (Proposition 4.1.7 b), [2] Theorem 2.1.9 h),
k)), so 1g, = 1g, and @, is an E-C*-homomorphism, injective or surjective if ¢ is so
([2] Corollary 2.2.5). Moreover F;, is canonically a full E-C*-subalgebra of F, for every
m € IN*, m < n ([2] Proposition 2.1.2). For every n € IN, F,, X G, = (F x G),.

DEFINITION 5.0.3 We fix in Part I a sequence (Cy,)sen € [1 En, put
nelN

A, :=C;Cy, B, :=C,C;,
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and assume Ay, B, € PrE,, Ay + B, = 1g = 1g,, and G, € (E,_ ) for every n € IN (where
we used the inclusion E,_; C E, in the last relation).

From
Ay =A,(A,+B,) =A2+A,B,=A,+A,B,,

Cn = Cn(An +Bn) = CnAn +Can = Cn +C2C::

we get A,B, = C2> = 0 for every n € IN.

We have C, € (F,—1)¢ for every n € IN and for every full E-C*-algebra F (where we

used the inclusion F,,_| C F,).

DEFINITION 5.0.4 Let (S,;)meN be a sequence of finite groups and (k,)qcN a strictly

kn
increasing sequence in IN such that 7, = [] S, for all n € IN. We identify S,, with a
m=1

subgroup of T for every m € IN. Assume that for every m € IN there is a g,, € % (Sy, E)
such that

f(s,t) = H g (Smytm)

melN
forall s,t € T. Foreveryn € Nletm € IN, k,—1 <m < kp, let x : Zp x Zy — S, be an
injective group homomorphism, and f;, 3, € Un E. We put

a:=yx(1,0), b:=x(0,1), o := f(a,a), o := f(b,b),

1 . .
Co =5 ((Br@idk)V] + (B @ idg)Vy) -
If f(a,b) = —f(b,a) = 1§ and a; B} + w37 = 0 then (Cy)nen fulfills the conditions of
Axiom 5.0.3.

The assertion follows from [2] Theorem 2.2.18 a), b). [ |

Remark 1. f E=C, S,, = Zr X Z, and k,, = m for every m € IN then (by [2]
Proposition 3.2.1 ¢) and [2] Corollary 3.2.2 d)) we may choose (C,)qcN in such a way

that the corresponding K-theory coincides with the classical one.

Remark 2. Denote by 7, the set of permutations p of IN such that
{jJeEN|p(j)#j} C N4y, so T is the set of permutations p of IN such that
{j€IN| p(j)# j} is finite. This example shows that the given conditions for 7, in
Example 5.0.4 are not automatically fulfilled.
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6.1 K for €g

6.1 Kjfor Cg

Throughout this section F' denotes a full E-C*-algebra.

PROPOSITION 6.1.1 Letn € IN.

a) An, B, € (F,—1)¢ (where we used the inclusion F,_ C F,).
b) A,F,A, is a unital C*-algebra with A,, as unit.
c) The map
pF F_1 —F, Xr—AX=XA,=AXA,=CXC,
(where we used the inclusion F,_1 C F,) is an E-linear injective
C*-homomorphism.
Only the injectivity of p!" needs a proof. Let X € F,_; with p¥'X = 0. Then
CiC,X=0, XC,=C,X=0,

XB,=XC,C:=0, X=X(A,+B,)=0. |

Remark. pl is not unital since pf 1z = A,,.

DEFINITION 6.1.2 We put for all m,n € IN, m < n,
P =P OPa10 0Pyt Fn — Fy .

Then {(F)nen, (P} )nme} is an inductive system of full E-C*-algebras with injective
E-linear (but not unital) maps. We denote by {F_,, (p} e} its algebraic inductive
limit. F_, is an involutive (but not unital) algebra endowed with the structure of an
algebraic E-C*-algebra, pl is injective and E-linear for every n € IN, and (Impl) e
is an increasing sequence of involutive subalgebras and algebraic E-C*-subalgebras of

F_, the union of which is F_,. We put for every X € F,,

X, =X,,=x =plx,
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and
=15, = py 15, = py 1k,
F,:=Impl .
In particular
(An)ﬁ ZPfAn = lﬁ,nfla (Bn)ﬂ :P,me (Cn)ﬁ :Pfcn .
We put

Pri,:={PeF,|P=P =P} =] (PrF.,).
nelN

ForP,Q € PrF_, weput P~ Q ifthereisan X € F_, withX*X = P, XX* = Q (in this case
there is an n € IN such that P,Q,X € F_,,); ~q is the Murray - von Neumann equivalence
relation, which we shall use also in the case of C*-algebras. For every P € PrF_, we

denote by P its equivalence class in PrF | ~.
Often we shall identify F, with F_,,, by using p/. By this identification F_,, is a full
E-C*-algebra with 1_,,, as unit.

F_, is also endowed with a C*-norm and its completion in this norm is the C*-inductive
limit of the above inductive system, but we shall not use this supplementary structure in

the sequel.

PROPOSITION 6.1.3 Ifn€ INand P € PrF_, ,_1 then

P = (A) P ~0 (By) P = (Cy) - P(Cy)", .

We have
((Cu)=P)" ((Ca)=P) = P(Ci)%, (C) - P = (An) P,
((Ca)=P)((Ca) = P)" = P(Ca) - (Co) ", P = (Bn) P,
$0 (Ap) P ~q (B,)P. [ |

PROPOSITION 6.1.4 For every finite family (P,);cs in PrF_, there is a family (Q;)icr in
PrF_, such that P; ~y Q; for every i € I and Q;Q; = 0 for all distinct i, j € I.
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We prove the assertion by complete induction with respect to Card I. Let iy € I and put
J:=TI\{ip}. We may assume, by the induction hypothesis, that there is an n € IN with
P € PrF_, ,_ foralli € I and F,P; = 0 for all distinct 7, j € J. By Proposition 6.1.3,

[)io - (An)—>E0 ~0 (Cn)—>Pto(Cn)*_> = QioJ

and
0ivP; = (Co)=Py(Co)", (An) Py = (Ca) s Py (CiAs) Py = 0

forall j € J. |

PROPOSITION 6.1.5 Let P,Q € PrF.,.

a) IfP',P".Q',Q" € PrF_, such that
PNO P/ ~0 P//7 Q ~0 Q/ ~0 Q//, P/Q/ — P//Q// — O

then
P/+Ql ~0 P//+Q// .
We put
P®Q:=P+0 .
b) PrF_, ]/~ endowed with the above composition law @ is an additive semi-group
with 0 as neutral element. We denote by Ko(F) its associated Grothendieck group

and by
[~}02PFF% —)Ko(F)

the Grothendieck map ([4] 3.1.1).

¢) Ko(F)={[Plo—[Qlo| POEPrF.}.

d) Forevery a € Ko(F) there are P,Q € PrF_, and n € IN such that

P:P(An)ﬁy Q:Q(Bn)%7 a= [P]O_[Q}Oo

a)Let X,Y € F_, with
XX =P, Xx* =P, Y'Y =0, Yy*=0".
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Then
0=PQ =X*XY"Y, 0=P'Q"=XX"YY"

SO
XY*=X"Y =0, X+Y)'X+Y)=X'X+Y'Y=P +(,

(X+Y)(X+Y)* :XX* +YY* :])//_|_Q//7 P/+Ql ~0 P//+Ql/ .
b) and c) follow from a) and Proposition 6.1.4.

d) follows from c) and Proposition 6.1.3. [ |

COROLLARY 6.1.6 The following are equivalent for alln € IN and P,Q € PrF_,,.

b) There is an R € PrF_, such that

PR=QR=0, P+R~oQ+R.

c) Thereisanm € IN, m > n+ 1, such that

P+ (Bm)ﬁ ~0 Q"' (Bm)ﬁ

or (by identifying F,, with F_, )

m m m m
ITA|P+{1e— [T A |~ | [TA)o+{1e— [] A -
i=n+1 i=n+1 i=n+1 i=n+1

a = b follows from Proposition 6.1.4 (and from the definition of the Grothendieck
group).

b = c¢. We may assume R € F_, ,,_1 for some m > n+ 1. By Proposition 6.1.3,
P+ (Bu)sR~0 P+R ~0 Q+R ~ O+ (Bu)-R,

SO
P+ (Bm)—> =P+ (Bm)—>R+ ((Bm)—> - (Bm)—>R) ~0

~0 Q0+ (Bm)%R'F ((Bm)% - (Bm)%R) =0+ (Bm)% .
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It follows

( lm_[ A,‘)P—F <IE— ﬁ Ai> :p£7nP+Bm+ (Am— ﬁ Al‘> ~0

i=n+1 i=n+1 i=n+1

~0 p;l;,nQJer+ (Am ﬁ Ai) = ( ﬁ A,’) o+ <1E ﬁ A,‘) .

i=n+1 i=n+1 i=n+1
c=-a is trivial. [ |

COROLLARY 6.1.7 Iffor everyn € INand P € Pr F_,,, thereisanm € N, m > n+1,
such that P+ (Byy)— ~o 1 then Ko(F) = {0}.

Let P,Q € Pr F_,. By our hypothesis there is an m € IN such that P+ (By,,)— ~o Q +
(Bm)—. By Corollary 6.1.6 ¢ = a, [P]o = [Q]o. Thus by Proposition 6.1.5 ¢), Ko(F) = {0}.
|

COROLLARY 6.1.8 Ky(E) # {0}.

Assume Koy(E) = {0}. Then [1g]o = [0]o, so by Corollary 6.1.6 a = ¢, there is ann € IN
such that

n
lg~ole—[JAi
i=1

14
Let ® be a point of the spectrum of E. Since E,(®) is a product of square matrices the
above relation leads to a contradiction by using the trace function. [

PROPOSITION 6.1.9 Let 4 be an additive group and v : PrF_, — % a map such that

1) POQePrF,,PO=0 = v(P+Q)=v(P)+Vv(Q).

2) PQEPIrF,, P~y Q = V(P)=V(Q).

Then there is a unique group homomorphism U : Ko(F) — 9 such that W[P]o = v(P) for
every P € PrF_,.
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By 2), v is well-defined on PrF_,/ ~¢ and by 1) and Proposition 6.1.5 a),b), v is an
additive map on PrF_, / ~¢. By 2) and Corollary 6.1.6 a=-b, v is well-defined on Ky(F).
The existence and uniqueness of u with the given properties follows now from Proposition
6.1.5¢). |

PROPOSITION 6.1.10 Let F —%5 G be a morphism in €.

a) Form,n € IN, m < n, the diagram

oF
n,m
FE, —— F,

o e

Gn — G,
p’?ﬂ‘l

is commutative. Thus there is a unique E-linear involutive algebra homomorphism
o, F, — G_, with

P 0Py =Py 0P
for every n € IN.

b) @, is injective or surjective if ¢ is so.
¢) There is a unique group homomorphism Ko(@) : Ko(F) — Ko(G) such that
Ko(@)[Plo = [@-Plo
for every P € PrF_,.
d) If @ is the identity map then Ko (@) is also the identity map.

e) If =0 then Ko(¢) = 0.

a) It is sufficient to prove the assertion forn =m+1. For X € F,,,,

ouPEX = 0,(A,X) = A0, X = pC @, X

(where we used the inclusion F,, C F;,).

b) follows from the fact that for every n € IN, ¢, is injective or surjective if @ is so ([2]
Theorem 2.1.9 a))).
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¢) By a) and Proposition 6.1.3, the map
PrF, — Ko(G), P+ [p_Po
possesses the properties from Proposition 6.1.9.

d) and e) are obvious.

COROLLARY 6.1.11 IfF 256 Hare morphisms in €g then

(Vo) =y 00,  Ko(woo)=Ko(y)oKo(p). u
PROPOSITION 6.1.12

a) The maps
u:F—F, (0,x)— o+x,

AME—F, ar—(o,—a)
are E-C*-homomorphisms.

b)
ot =idp, lFou+l/o7rF:id,:-,

Ko(1") o Ko(i) + Ko(A") o Ko(n") = idy, ) -

c)
Kolth) | SO,
0 — Ko(F) ——— Ko(F) k,0F) Ko(E) —0

is a split exact sequence.

a) is easy to see.

v

b) For (at,x), (B.y) € F,
lF[J,((X,x) = (Oaa+x)7 )L,TEF((X,)C) = ((X,*(X),
(1" u(ex)) (A" (B,y)) = (0,0+x)(B,—B) = (0,0),

W+ AT (o) = (t,)
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so tf o+ A’ oxl is a full E-C*-homomorphism and
Fout+Aonf =idy .
By a) and Corollary 6.1.11,
Fop, + A onf, =idy .
By Proposition 6.1.10 c),d) and Corollary 6.1.11, for P € PrF .,
(Ko(1") o Ko (1) + Ko(L") 0 Ko (7)) [Plo = Ko(1" o ) [Plo + Ko(A 0 ") [Plo =
= [thusPlo+ AL 75 Plo = [(1F o+ A" om") -, Plo = [Plo
so by Proposition 6.1.5 c),

Ko(1") o Ko(u) +Ko(A") o Ko (") = id, ) -

¢) By b), Proposition 6.1.10 d),e), and Corollary 6.1.11,
K()(EF) OK()(IF) = K()(7EF o lF) =0,
Ko(n") o Ko(AT) = Ko(n" 0 AT) = idy k) ,

Ko(u) o Ko(1") = Ko(uo1") = idyr)

and so Ko(1¥) is injective. By b), for a € Ko(F),
a= K()(lF)Ko(‘u)a +K0()~/)K0(7ICF)CI .

Thus if a € KerKo(nf) then a = Ko(i")Ko(u)a € ImKoy(1¥), and
KerKo(nF) = ImKy(1F).

6.2 KO for SﬁE

DEFINITION 6.2.1 Let F be an E-C*-algebra and consider the split exact sequence

F
FE—0

T

Fos
0—F—F

=l

introduced in Definition 4.1.4. We put

Ko(F) := KerKo(n") .

SO
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By Proposition 6.1.12 c), this definition does not contradict the definition given in

Proposition 6.1.5 b) for the case that F is an full E-C*-algebra.

Ko({0}) = {0} since 1% is bijective.
PROPOSITION 6.2.2 Let F i) G be a morphism in Mg .

a) The diagram

F-—‘“F -+ F
o| |0 [
G G E
16 0
is commutative.
b) The diagram
Ko(F) —— Ko(F) 2" Ky(E)
Ko(fp)l lKo(fP) I
Ko(G) —— Ko(G) —— Ko(E)
c Ko(n%)

is commutative, where Ko(@) is defined by Ko(Q).

c) If P € PrF_, then
Ko(9)[Plo = [¢-Plo -

d) K()(ldF) = idKO(F)'

e) If =0 then Ko(¢) = 0.

a) is obvious.

b) By a) and Corollary 6.1.11, the right part of the diagram is commutative. This

implies the existence (and uniqueness) of Ko ().

c¢) By a), b), Proposition 6.1.10 a),c), and Corollary 6.1.11,

Ko(@)[Plo = Ko(®)[15,Plo = [@-15,Plo = 150, Plo = [@-P]o -

d) and e) follow from c) and Proposition 6.1.5 c).
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COROLLARY 6.2.3 Let F -2+ G -5 H be morphisms in M.

a) Ko(y)oKo(9) =Ko(yo o).

b) If ¢ is an isomorphism then Ko(@) is also an isomorphism and

Ko(@) ' =Ko(o ™).

a) follows from Proposition 4.1.5 b), Corollary 6.1.11, and Proposition 6.2.2 b).

b) follows from a) and Proposition 6.2.2 d). |

PROPOSITION 6.2.4 For every E-C*-algebra F,

Ko(F)={ [Plo—[c",P]o | PEPrF.,} .

For P € PrF._,, by Proposition 6.2.2 ¢) and Corollary 6.1.11 (since n¥ = nf o 7)),
Ko(7")[6L,Plo = [nf, 6", Plo = [7E, Plo = Ko(n")[P]o

SO
[Plo — [6".Plo € Ker Ko(n") = Ko (F) .

Let a € Ko(F). By Proposition 6.1.5 d), there are Q,R € PrF, and n € IN such that
0=0(An)-, R=R(By)-, a=[Qlo—[Rlo.
Then
a=[Q(An)~lo+[(Bn)— —R(Bn)-Jo = ([R(Bu) o = [(Bn)» — R(By) o) =

= [Q(An)% + ((Bn)ﬁ - (Bn)ﬁ)]ﬂ - [(Bn)%]() :

If we put
P:=0Q(An)— + ((Bu)— —R(By)-)

then
a=[Plo—[(Bx)-]o -
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By Proposition 6.2.2 ¢) and Corollary 6.1.11 (and Definition 4.1.4)
0=Ko(n")a = Ko(n")[Plo — Ko(n")[(Ba)]o = [x,Plo — [, (Ba) - ]o,
[0",Plo = [AL 2!, Plo = Ko(A")[x, Plo = Ko (A") [, (B4) Jo =

= [ALal (By)-Jo = (65, (Ba) - Jo = [(Ba) o,

a=[Plo—[o",Ply . n
PROPOSITION 6.2.5 Let F be an full E-C*-algebra and n € IN.

a) C,+C;; €lUngE,.
b) For X,Y € F,_|,

c) IfU,VeUnF,_1then A,U+B,V €eUnkF,.
d) IfU eUnF,_| then A,U+B, e UnF, and A,U+B,U* € Ung F,.

a) From
(Cﬂ +C;:)(C’Z +C;:) =B,+A,=1g

it follows that C, 4+ C;; is unitary. Being selfadjoint, its spectrum is contained in {—1,+1}
and so it belongs to Ung E,, ([4] Lemma 2.1.3 (ii)).

b) We have
(Ca+C)(AX +BaY )(Co+C,) = (GX+CY)(Ca+C) = BiX +A,Y .

¢) We have
(AU+B,V)(AU+B,V) =A,+B,=1g,

(A U+B,V) (AU+B,V)=A,+B,= 1.

d) By ¢), A,U +B, € UnF,. By b),

(Ch+CHAU +B,)(Ci+C) =B U+ A,
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so it follows from a), that A,U* 4+ B,, is homotopic to B,U* + A, in Un F;, and so

AU +B,U" = (AU +By)(An+B,U™)
is homotopic in Un F, to

(AnU +By)(AgU" +By) = Ap+ By = 1,
ie. A,U +B,U* € Uny E,. [ |
PROPOSITION 6.2.6 Let F be a full E-C*-algebra, n € IN, P.Q € Pr F,, and X € F,
with X*X = P, XX* = Q. Then there is a U € Ung F, ;2 with

U(AVH»ZAVH»IP)U* = An+2An+] Q, 1.€. UHP*)U: = Q% .

We have X(1z —P) = (1g — Q)X = 0. Put
Vi=ApiX +Coit(1g = P) +Cop (1g — Q)+ Bu1X* (€ Fyp) -

Then
V* :An+]X*+CZ+](1E —P)+Cn+](1E —Q)+Bn+]X,

VV* =A,110+Bni1(lg —P) +Ant1(1g — Q) + By 1P =Api1 + By = 15,
V'V =A1P+A1(lg—=P)+By1(1g = Q) + By 1Q =Auy1 +Bu1 =

soV e Un F, 1. Moreover
VAp 1P =Ap11X, An-HXV* =Ann10.

Put
U = An+2V +Bn+2V* .

By Proposition 6.2.5 d), U € Ung F,,4+>. We have
U(Api2401P)U" = (Api2V +BpaV*)Ap 2401 P(Ani 2V + B yaV) =
= An+2An+1X(An+2V* +Bn+2v) =Ap124n+10 u
PROPOSITION 6.2.7 Let F -5 G be a morphism in Mg and a € KerKo(o).
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a) Therearen € IN, P € Prlﬂn, and U € Uny Gvi,ﬁz such that

a=[Plo—[c5.P)o U(¢_PU"=0c%¢_,P.

b) If @ is surjective then there is a P € PrF_, such that

a= [Py —[cF, P)o, ¢P=0c%¢p.P.

a) By Proposition 6.2.4, there are m € IN and Q € PrI:”_,_,m_l such that
a=[0lo—[c",0lo -
Since ¢ o 6 = 6% 0 @, by Proposition 6.1.10 ¢) and Corollary 6.1.11,
0=Ko(@)a=[¢-0lo—[¢-0,0)o = [¢-0lo — [05¢-Qlo -
By Corollary 6.1.6 a=-c, there is an n € IN, n > m, such that
-0+ (Ba)— ~0 6500+ (Br)— = 05($-0+ (Ba)-) -

Put
P:=Q+ (B, €PrF,,.

Then
[Plo—[6%,Plo = [Qlo + [(Ba)~Jo — [6%,Ql0 — [(B) ]o = a,
[0, Plo— [650-,Plo = [¢-Qlo+ [(B)~Jo— [6%¢-Qlo— [(Br)~]o =0.

By Corollary 6.1.6 a=-b and Proposition 6.2.6, there is a U € Ung GVA_V,HZ with

U(¢p_P\U* = ¢P.

b) By a),therearen € IN,n > 2,0 € Prﬁin,z, and U € Uny GV%,, such that
a = [Qlo— (0%, 0o, U(¢-Q)U" =05¢-,0.

Since @, : F, — én is surjective, by [4] Lemma 2.1.7 (i), there is a V € Un F.,, with
@,V =U. We put

P:=VQOV*~y0
)

a=[Plo—[a%Plo
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and
PP = (P-V)(9-0)(¢-V") =U(¢-Q)U" = of)(])_,Q,

PROPOSITION 6.2.8 Let
® v
0O—F—G—H—0

be an exact sequence in Mg.

a) Q_, is injective.
b) The following are equivalent for all X € G_,:

b)) X elm (Z)%.
by) WX =ocfly X
c) Ko(F) ptd Ko(G) o) Ko(H) is exact.

a) @ is injective (Proposition 4.1.5 a)) and the assertion follows from Proposition 6.1.10
b).

b1 = b, follows from yo @ = 0.

by = by. Let n € IN such that X € G_,,, which we identify with G,. Then X has the

form
X=Y ((0.%) ®idg)VC,

teTy,

where (0y,Y;) € G for every t € T,,, and so by by),

Y. (o, w) @idi )V = X = ol X = Y (04, 0) @idg )V, .

teTy teTy

It follows yY; = 0O for every ¢ € T, ([2] Theorem 2.1.9 a)). Thus for every ¢ € T, there is
aZ; € F with ¢Z, =Y, and we get

X = Z ((Oﬂr,(PZt) ®ldK)VtG =

teTy
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= ¢ (Z ((OC,,Z,)@idK)V,F> elm@p, CImp., .

1€T;,
¢) By Corollary 6.2.3 a) and Proposition 6.2.2 ),

Ko(w)oKo(9) =Ko(yog)=0

so ImKy(@) C KerKo(y). Let a € KerKo(y). By Proposition 6.2.7 b), there is a P €
Pr GH such that

a = [Plo—[6SPlo, Y P =0y P.

Then P has the form
P=Y ((04,X)®idg)VC

tely

for some n € N with (oy,X;) € E x G for every ¢ € T,,, where we identified G, with G_, ,,.
We get

Y (o, wX) @idg)VH = y,P= oty P =Y (0, 0) @idg)V .

teTy, teTy,

Thus yX; =0 ([2] Theorem 2.1.9 a)) and there is an ¥; € F with ¢Y; =X, forevery ¢ € T,,.
We put
0:= Y (&, Y)@idg)V) € PrE.,

tety

with the usual identification (¢ is an embedding !). Then

¢-0=Y ((os,0Y,) @id)VC = Y (04, X,) @idg )V, = P

tely, teTy
and by Proposition 6.2.2 ¢) (since ¢ o o' = %0 ),
Ko(9)([Qlo — [6%.Q0) = [¢-Qo — [¢—. 6", Qlo =
=[¢-0lo—[0%¢-Qlo = [Plo—[c5Plo=a.

Thus Ker Ko(y) C ImKy(@), Ker Ko(y) = ImKy (). |

PROPOSITION 6.2.9 (Split Exact Theorem for Ky) If
o Y
0—F—G A H—0

Science Publishing Group 181



Chapter 6 The Functor Kj

is a split exact sequence in Mg then

Ko(9) Solw,
0 — Ko(F) —= Ko(G) xy) Ko(H) — 0

is also split exact. In particular the map
Ko(F) x Ko(H) — Ko(G), (a,b) — Ko(@)a+Ko(A)b

is a group isomorphism and Ko(F) =~ Ko(E) x Ko(F) for every E-C*-algebra F.

By Proposition 6.2.8 c), the second sequence is exact at Ko(G). From
Ko(y)oKp(A) =Ko(wold) =Ko(idy) = idKO(H)

(Corollary 6.2.3 a) and Proposition 6.2.2 d)) it follows that this sequence is (split) exact
at Ko(H).

Let a € KerKo(¢). By Proposition 6.2.7 a), there are n € IN, P € PrF_,n, and U €
Ung GVHVHZ such that

a = [Plo— [0, P, U(¢-P)U" = cS¢P.

Put
Vi= (AW, UHNU €eUnG_, pya .

Then
VoV = (WL U") (Y- U) = 15 a2, oﬁ .V =y,V.

By Proposition 6.2.8 by, = by, there is a W € Un Fa,n+2 with ¢_W =V (¢ is an
embedding). We have

¢ (WPW") =V(¢_P)V" = (EH‘IV’%U*)U((IV’%P)U*(Z%‘IV’%U) =
= (iﬁlf/ﬁU*)(Gg(bﬁP)(iﬁlilﬁU) = Zﬁlﬁﬁ(U*(Gg(f)ﬁP)U) =
= AV, P=c%p_ P=0p_ c"P.
Since ¢_, is injective (Proposition 6.2.8 a)),
P~gWPW* =6t P, a=0

and Ky (@) is injective.
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The last assertion follows since

Fo
0—F—F

=[%
]
|
o

is a split exact sequence. [

COROLLARY 6.2.10 Let F,G be E-C*-algebras.

a) If we put
u:F—FxG, x+—(x,0), m:FXG—F, (x,y)—x,
L:G—FxG, y—(0,y), m:FXxG—F, (x,y)—y,

then the sequences

Ko(n) ol
0 — Ko(F) —>= Ko(F X G) ko) Ko(G) — 0,

Ko(mp)
Ko (1 _ 2o\
0(12) llﬂ)

0—)K0(G) Ko(FXG) Ko K()(F) —0

are split exact.

b) The map
Ko(F) X Ko(G) — Ko(F x G), (a,b) — Ko(11)a+ Ko(12)b

is a group isomorphism (Product Theorem for Kj).

a) is easy to see.

b) follows from a) and Proposition 6.2.9. [ |

THEOREM 6.2.11 (Homotopy invariance of K;)

a) If o,y : F — G are homotopic morphisms in Mg, then Ko(¢) = Ko(Y).

b) IfF N G, G Y Fisa homotopy in Mg then

Ko (@) o Ko(y) = idkG) Ko(y) o Ko(9) = idy(r) -
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¢) If F and G are homotopic E-C*-algebras then Ko(F) and Ko(G) are isomorphic.
d) If F is an E-C*-algebra such that idr is homotopic to
Op:F—F, x—0
then F is homotopic to {0}.

e) If the E-C*-algebra F is homotopic to {0} then Ko(F) = {0}.

a) Let
¢s: F — G, s€1[0,1]

be a pointwise continuous path of morphisms in 9t such that ¢ = ¢, ¢; = y. Then

¢ : F — G, s€[0,1]
is a pointwise continuous path of morphisms in €z with o = ¢, ¢; = W and for every
n € 1IN,

v

() sn s (F)sn — (G) s,y s€[0,1]

is a pointwise continuous path in €z with (¢y)_., = (¢)_, and (¢;)_, = (¥)_,. For
every P € Pri_,,,
[0,1] — Pr(G) ., s+ (¢s)snP

is continuous so (by [4] Proposition 2.2.7)
Ko(@)[Plo = [¢Plo = [y Plo = Ko()[Plo
(Proposition 6.2.2 ¢)). By Proposition 6.2.4, Ko(¢) = Ko(y).
b) follows from a), Corollary 6.2.3 a), and Proposition 6.2.2 d).
c) follows from b).

d)If weput ¢ : F — {0} and y : {0} — F then y o ¢ = Op is homotopic to idr and
@ o y is homotopic to id{, so F is homotopic to {0}.

e) follows from c). [ |

We show now that Kj is continuous with respect to inductive limits.
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THEOREM 6.2.12 (Continuity of Ko) Let {(F)icr, (¢i)i jer} be an inductive system in
Me and let {F, (¢;)ic1 } be its inductive limit in Mg . By Corollary 6.2.3 a),

{(Ko(F))ier, (Ko(@i)))ijer}

is an inductive system in the category of additive groups. Let {4, (W;)ic1} be its limit in
this category and let y : 9 — Ko(F) be the group homomorphism such that y o y; =
Ko(@;) for every i € I. Then y is a group isomorphism.

{(F)ier, (@ij)ijer} is an inductive system in €z and by [2] Proposition 1.2.9 b),
{F, (¢;)ic1} may be identified with its inductive limit in ¢z . By[2] Proposition 2.3.5, for
every n € IN, {((F)=n)iers (¢)=n)ijer} is an inductive system in €g and

{(F_n, ((¢;)—n)icr} may be identified with its inductive limit in € .
Step 1 y is surjective

Let Q € Pr(I:“)_m. By [5] L.2.2, there are i € I and P € Pr(I:"i)_m such that
(®)—=nP—QJ < 1, so by [4] Proposition 2.2.4, (¢;)—,P ~¢ Q. By Proposition 6.2.2
b),c)

wVi[Plo = Ko(i)[Plo = Ko(;)[Plo = [(@)~nPlo = [Clo -

Since

PrE., = U Pr(F)_,,
nclN

V is surjective.
Step 2 v is injective

Let a € ¢ with ya = 0. Since &4 = J;c;Im y;, there is an i € I and an a; € Ko(F;) with
a = Yia;. There are n € IN and P,Q € Pr(F;)_,, such that
ai = [Plo—[Qlo
(by Proposition 6.1.5 c)). By Proposition 6.2.2 ¢),

0= ya = yya= Ko(¢;)a = Ko(¢:)[Plo— Ko(¢:)[Qlo =
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=[(¢:)=nPlo—[(¢:)=nQlo -

v

By Corollary 6.1.6 a=b, there is an R € Pr(F})_, such that
PR=QR =0, P+R~oO+R

and we get
a= [Plo+[R]o—[Qlo— [Rlo = [P+R]o— [0 +R]o=0. |

6.3 Stability of K

The stability of Ky holds only under strong supplementary hypotheses. We present
below such possible hypotheses, which we fix for this section. We shell give only a
sketch of the proof.

Let S be a finite group, ¥ : Zo X Z, — S an injective group homomorphism,
a:=o(1,0), b:=w(0,1), c:=0(l1,1),
and g a Schur E-function for S such that
g(a,b) = g(a,c) = g(b,c) = —g(b,a) = ¢ .
We put for every n € IN,
Ti=5"={teSN|meNm>n=t,=1},

T:= U Tn:{teS]N| {n €N, 1, # 1}is finite } ,
nelN

fiTxT—E, (s,;6)— []8(sutn),
nelN

s if m=n

g:]N—>S, m—
1 if m#n

for every s € S, and

1 . .
cn::E(vngv{), Ay:=C'Cy,  B,:=CC:.
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Then f is a Schur E-function for T and the following hold for all s, € S and n € IN:

F5,6) = gls,1),
%1:#@@:@@7
seTl, 1 = stVg = Vngfv
M:;ﬁ+@mﬁﬂ, &z%ﬁ*@ﬁ”ﬂa
An+By=V{ =1g,

so the assumptions of Axiom 5.0.3 are fulfilled.

Remark. 1If yx is bijective and E = U then the corresponding projective K-theory

coincides with the usual K-theory.

PROPOSITION 6.3.1 Let F be an full E-C*-algebra and m,n € IN. We define
o= am’n : (Fm)n — F;ﬂ+n7

B =B : Foven — (Fa)n,
by
(aX) (5.) 1= (X)s, ((BY)1)s =Y
for every X € (Fy)n, Y € Fyyn, and (s,t) € S™ x §" = S, where the identification is

given by the bijective map

S X 8" — ST (5,8) > (S, Smotly sty -

a) o and B are E-C*-isomorphisms and o = B,
b) 0tAn = Amin.

c) The diagram

m,n—1

(04
(Fm)nfl —_— Fm+n71

prll:m J{ J{prlr;rn

(Fm)n ?) Foin

%

is commutative.

Science Publishing Group 187



Chapter 6 The Functor Kj

It is obvious that o and 3 are E-linear and oo § = idp,, ., B o & = idf,,),. Thus o and
B are bijective and @ = B!,

For X,Y € (F,), and (s,t) € S™ x §", by [2] Theorem 2.1.9 ¢),g),

= ) F), s v ) (@X) ) (@Y ) 11y =

(u,y)esSmxsn
= Z f(uvuils)f(wvilt)(XV)M(Yv*lt)lfls =
(u,v)eSm < S"
= Z FOov (XY, 1) =
vest

= ( Y vlt)Xvau)s = ((XY)1)s = (a(XY)) s

ves”n
so o is a C*-homomorphism and the assertion follows.

b) follows from the definition of A, and A,,,+,.

¢) follows from b). |

PROPOSITION 6.3.2 Let F -2 G be a morphism in € and m,n € IN. With the
notation of Proposition 6.3.1 the diagram

af
(En)n L Fm+n

(@m)n l J{ Prtn

(Gm)n S Gm+n

G
%

is commutative.

For X € (F,), and (s,7) € " x §" = ™",
((pernarI;,nX)(s,t) = (P(O‘rinx)(m) =0(X)s =
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= (@nXe)s = (((@m)nX)1)s = (arg,n((l’m)nx)(s,t)
SO
Pm+n © O‘g,n = anGl,n o (@m)n - u
THEOREM 6.3.3 (Stability for Ko) If F —> G is a morphism in Mg andn € N then
Ko(F,) ~ Ko(F), Ko(G,) ~ Ko(G), Ko(@n) ~ Ko(@) . [ |

Remark. If (F,(pf)nen) and (Ge, (p¥)nen) denote the inductive limits in 9tg of

the corresponding inductive systems ((F,)qeN, (p},ll:;m)”_’mg]]\]) and ((Gy)nen, (pgm)n,mgm)
then, with obvious notation,

Ko(Fo) * Ko(F),  Ko(Gw) ®Ko(G),  Ko(¢w)~Ko(9) -
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7.1 Definition of K|

PROPOSITION 7.1.1 IfF is a full E-C*-algebra and n € IN then
' .UnF,_| —UnF,, U+~——AU-+B,
is an injective group homomorphism with
tF(Ung, , Fi1) CUng, F, .

ForU,V eUnF, we put U ~| V ifUV* U"V € Un E,. ~ is an equivalence relation

and ~y, implies ~1.

ForU,V eUnF,_,
T'U* =AU+ B, = (ZU)",
(#FU)(7F'V) = (AU 4 By)(AV +By) = AUV 4B, = T4 (UV),
(G U)(E3 V) = (3 U) (5 U) = Ay + By = 15,

i.e. T is well-defined and it is a group homomorphism. If XU = 1f, then

AU +B,=TU =1, =1g =A, +B,, AU =A,,
so by Proposition 6.1.1 ¢), U = 1g,_, = 1g and f,f is injective.
The other assertions are obvious. [ |

DEFINITION 7.1.2 Let F be a full E-C*-algebra. We put for all m,n € IN, m < n,

TF

=1L ot jo-ofh  :UnFy—UnF,.

9

Then {(Un F))neN, (Tum)mneN} is an inductive system of groups with injective maps.
We denote by {unF, (t!'),eN} its inductive limit. T is injective for every n € IN, so
(tF' (Un F,))nen is an increasing sequence of subgroups of unF, the union of which is
unF. We put for everyn € NandU € Un F,,

UnF._,:=1t(UnF,), U_:=U_,:=Uf, =1U,

n

Iy =18 =1lg (=1l1g).

(tF (Ung, F,))ne is an increasing sequence of subgroups of unF; we denote by ung F

their union.
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We often identify Un F,, with Un F,,.

PROPOSITION 7.1.3 Form,n € IN, m <n, and U € Un F,,,

r}:mU:< f[ Ai>U+<1E— f[ Al-) .

i=m+1 i=m+1

We prove this identity by induction with respect to n. The identity holds for n:=m+ 1.
Assume it holds for n — 1 > m. Then

F =F _F F
17n,mU =T Tn—l,mU = AnTn—l,mU +B, =

n—1 n—1
=An [T A |u+|te— J] A) | +B.=
i=m+1 i=m+1

n n
=\ [T Aa|u+|1e— ][] A - [ |
i=m+1 i=m+1

PROPOSITION 7.1.4 Let F be a full E-C*algebra.

a) If U,V € Un F,_1 for some n € IN then
#(UV) i B (VU), FUVU) i T (V).
b) ungF is a normal subgroup of un F and un F [ung F is commutative.
c) ForallU,V €unF,
UV cungF <= U"V cungF .

We put U ~ V ifUV* € ung F. ~ is an equivalence relation.

a) By Proposition 6.2.5 a),b),
' (UV) =AUV + B, = (AU +B,)(A,V +B,) ~
~n (AU +By)(An+B,V) =AU + B,V ~;, A,V + B,U ~, ’E,Il:(VU) .
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It follows
T (UVU) i T UUV) = (V).
b) ung F is obviously a subgroup of un F. The other assertions follow from a).
c)Letg:un F — un F /ung F be the quotient map. If UV* € ung F then by b),
q(UV") = q(U)q(V") = q(V*)q(U) = q(V'U),
V*U €unpF, U*V =(V'U)* €ungF . |
DEFINITION 7.1.5 We denote for every E-C*-algebra F by K, (F) the additive group
obtained from the commutative group unF /ung F (Proposition 7.1.4 b)) by replacing the

multiplication with the addition @, by this the neutral element (which corresponds to 1g)

is denoted by 0. For every U € unF we denote by [U]; its equivalence class in Ki (F).

Remark. Let F be a full E-C*-algebra. By Proposition 4.1.2 d), F is isomorphic to
E x F, so in this case we may define K using F instead of F (as we did for Kj).

PROPOSITION 7.1.6 Let F —* G be a morphism in M.

a) Form,n € IN, m < n, the diagram

. y
UnkF, —— Unk,

| Lo

G
Tiom

is commutative. Thus there is a unique group homomorphism
¢ cunF — unG

such that
y PG
(p<— © Tn = Tn © (Pn

for everyn € IN.
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b) o_(ung F) C ung G; if @ is surjective then Q. (ung F) =ungG.
¢) There is a unique group homomorphism
Ki(9): K (F) — K (G)

such that
Ki(9)[U]i = [¢-U]x

for every U € unF.
d) Kl (ldF) == idKl(F)'

e) Ki({0}) = {0}.

a) It is sufficient to prove the assertion forn =m+1. ForU € Un E,,
7 @mU = An(GnU) + By = Gu(AnU + B,) = §u1),,U -
b) Since ¢,(Ung, F,) C Ung, G, for every n € IN, it follows @, (ung F) C ung G. If

¢ is surjective then by [4] Lemma 2.1.7 (iii), we may replace the above inclusion relation
by =.

c¢) follows from a) and b).
d) is obvious.

e) follows from un E = ung E. [ |

DEFINITION 7.1.7 An E-C*-algebra F is called K-null if
Ko(F)=K;(F)=0.

Let F % Gbea morphism in Mg . We say that @ is K-null if
Ko(9) =Ki(9)=0.

/ "
We say that ¢ factorizes through null if there are morphisms F L HS Gin Mg such
that = ¢" o ¢’ and His K-null.
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PROPOSITION 7.1.8

a) If F 2.6V Hare morphisms in YNy then

. " y " A~
Ve o =(Yo), = (‘I’O(P)e , Ki(y)oKi(e)=Ki(yoo).

b) If p =0then K, (¢) =0.

c) (Homotopy invariance of Ky) If ¢,y : F — G are homotopic morphisms in Mg
then

K (o) =Ki(y).
d) (Homotopy invariance of K;) If F 26V Fisa homotopy in Mg then
Ki (o) : K| (F) — Ki(G), Ki(v):K((G) — K, (F)
are isomorphisms and K1 () = K1 (@)~
e) Ifthe E-C*-algebra F is homotopic to {0} then F is K-null.

f) If a morphism in Mg factorizes through null then it is K-null.

a) Since

for every n € IN we get

For U € unF, by Proposition 7.1.6 c),

Ki(y)Ki(@)[Ul1 = Ki(y¥)[@- U1 = [ @ U]; =

= [(Yod) U] = (ﬂ) w] — Ki(yo@) U],
1

so K1 (y) oK () =Ki(yoo).

b) If we put ¥ : F — {0}, 1 : {0} — G then ¢ = 109 and by a) and Proposition
7.1.6¢), K1 () = 0.
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c) Let
os: F — G, s€[0,1]

be a pointwise continuous path of morphisms in 9z with ¢o = ¢ and ¢; = y. Letn €
IN. Then

(és)n:ﬁ‘n—>én> SE[OJ}

is a pointwise continuous path of E-C*-homomorphisms with (), = @, and (¢1), = V.

For every U € Un F;,, the map
9:00,1] —UnG,, s+ (§).U

is continuous and ¥ (0) = ¢,U, (1) = WU, i.e. $,U and W, U are homotopic in Un G,,.
It follows

Ki(9)[7 Ul = Ki (w)[7L U]y ,

which implies K; (@) = K; ().
d) follows from c) and Proposition 7.1.6 d).

e) By d) and Proposition 7.1.6 ¢), K| (F) = {0}. By the Homotopy invariance of Ky
(Theorem 6.2.11 e)), F is K-null.

f) follows immediately from a), e), and Corollary 6.2.3 a). [ |

PROPOSITION 7.1.9 If
% v
0—F—G—H—0
is an exact sequence in Mg then
K (@) Ki(y)

Kl(F) — K](G) — Kl(H)

is also exact.

Leta € KerK;(y) and let U € unG with a = [U];. By Proposition 7.1.6 c),
0=K(y)a=[y_Ul, V.U €cungH .
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By Proposition 7.1.6 b), there is a V € ung G with W,V = . U. We put W := UV*. By
Proposition 7.1.4 ¢), [W]; = a and so

VW =(WU)(PV) =1g.
W has the form
w=Y (&,X)®idk)VC

teTy,

for some n € IN, where (o, X;) € E x G for every ¢ € T,,. We get

e =WW = Y (0. wX,) @idg )V

teTy,

and so by [2] Theorem 2.1.9 a), yX;, =0 for every ¢t € T,,. For every t € T,, let Y; € F with
¢Y; = X; and put
W'=Y (oY) ®idg)V/] .

t€Ty
Since ¢ : F —» G is an embedding, W' € Un F_,, and by Proposition 7.1.6 ¢),
Ki(@)Wh=[@gW]h=W=a.
Thus Ker K| (y) C ImK;(@).
Let now U € unF._. By Proposition 7.1.8 a),b),
Ki(y)Ki(9)[U]1 = Ki(yo)[U]1 = Ki(0)[U]1 =0

so ImK; (@) C KerK;(y). [
PROPOSITION 7.1.10 The following are equivalent for every full E-C*-algebra F.

a) Ki(F) = {0}.

b) For everyn € IN and U € Un F, there is an m € IN, m > n, with ’L'ni;nU ~yp lg in
Un F,,.

a = b Since

(1g,U) €UnE, xUnF,=Un (E,x F,) =Un (E X F),,
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it follows from Proposition 4.1.2 d), (1g,U — 1g) € Un F,. By a), there is an m € IN,
m > n, with

Up:= (15, U —15) = Th ,(15,U — 1) € Ung,, Fy .
Thus there is a continuous map
[0,1] — UnFE,, s+ U
with Uy € Un E,, (C Un F,,). We put
Ul :=Uy(cLUy)* (e Un Ey,)
for every s € [0, 1]. Then the map
[0,1] — UnkE,, s+ U
is continuous and Uj = Uy, U{ = 1g. Let
¢:F—ExF, (a,x)— (ot,x+ )
be the E-C*-isomorphism of Proposition 4.1.2 d). Then
U":[0,1] — UnE,xUnk,, s+ @,U,
is continuous and
Uy = ouUp=(1£,7,,U), U =@uU{ = (g, 1) -
Thus ’L’,i,nU ~plpinUnF,.

b= a Let a € Ki(F). There are n € IN and U € Un F, with a = [U];. Since
U(cfU)* ~; U, we may assume U = U(c}U)*, i.e. 6I'U = 1g. Thus there is a unique
X € F, with tf X =U — 1g. Then

U :=X+1gcUnF,.
By b), there is an m € IN, m > n, with 5, , U’ ~}, 1g. By Proposition 4.1.2 d),
U= (IE7X) = (lEvU/_ 1E)7 Trﬁ,nU = (1E7Tn€,nU/_ IE) ~h (lEaO)v

ie.a=[U]; =0. |
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COROLLARY 7.1.11 IfF is a finite-dimensional full E-C*-algebra then K| (F) = {0}.

For every n € IN, F,, is finite-dimensional and so there is a finite family (k;);c; in IN such
that F, = []Cy, x,. Thus every U € Un F, is homotopic to 1g in Un F,. By Proposition
i€l

7.1.10 b = a, K, (F) = {0}. |

COROLLARY 7.1.12 [f the spectrum of E is totally disconnected (this happens e.g. if
E is a W*-algebra ([1] Corollary 4.4.1.10)) then Un E,, = Ung E, for every n € IN and so
K (E) ={0}.

Let Q be the spectrum of E and let U € Un E,. U has the form

U=Y (U®idg)V,

teTy,

with U; € E for every t € T,,. We put

U(w):= Y (Ul(w)®idk)V;

tely

for every @ € Q and denote by 6(U(w)) its spectrum, which is finite. Let @y € Q and
let 8y € [0,27] such that ¢'% ¢ o(U(ay)). By [1] Corollary 2.2.5.2, there is o clopen
neighborhood Q of @y such that ¢’% does not belong to the spectrum of U(w) for all
o € Q. Assume for a moment Qg = Q and put for every s € [0, 1],

hy T\ {0} —T, &V —s e, Wy := hy(U),
where ¥ €]y — 27, %[. Then
[Ovl]_>U”Ena s—> W

is a continuous path in Un E,, ([1] Corollaries 4.1.2.13 and 4.1.3.5) with W; = U and
Wo=1g. ThusU € Uny E,,.

Since Q is the union of a finite family of pairwise disjoint clopen sets of the above form
Qo, U € Ung E,.

By Proposition 7.1.10 b = a, K; (E) = {0}. [
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7.2 The Index Map

Throughout this section
¢ v
0—F—G—H—0

denotes an exact sequence in Mg and n € IN.

PROPOSITION 7.2.1 LetU € Un H,_;.

a) ThereareV € Un én and P € PrE, such that

V.V =AU +B,U", P =VA,V* .

b) IfW € Un G, and Q € PrF, such that
'-Iv/nW =AU +BnU*7 (/v)nQ = WAnW*
then G{Q =A, and P ~q Q.
¢) LetUy € UnH,_1, Vo € Un G, and Py € PrF;, with
Up~1U, li/erO :AnUO+BnUg7 ¢11P0 :VOAnV(;F .
Then Py ~q P.
d) IfU € Ung, , Hy— then P~ A,.
a) By Proposition 6.2.5 d), A,U + B,U* € Unyg H, so by [4] Lemma 2.1.7 (i) (and [2]
Theorem 2.1.9 a)), there isa V € Ung G, with v,V =AU + B,U*. We have
(VA V*) = (AyU + B,U")A, (AU +B,U) = Ay,
H *\ _ H _ 0y *
G, Yn(VAV™) = 0,/ Ay = Ay = W (VA,V™),
so by Proposition 6.2.8 b, = b1, there is a P € Pr F, with @P=VA,V*.
b) Since nf = 7t o Yo @, we have

' Q =m0, 3.0 = ml (WA, W) =
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= 1, (AU + ByU")An(AU* +B,U)) = My Ay = Ay,
o0 =A,. Since
U, (WV*) = (A,U+B,U") (AU +B,U)=A,+B, =1 = G,f]llvln(WV*),
by Proposition 6.2.8 b, = by, thereisaZ € Un F, with @uZ =WV*. Then
G.(ZPZ*) = (WVH)(VA,V) (VW) = WA, W* = ¢,0,
ZPZ* = Q, P~y Q.
¢) By Proposition 7.1.4 ¢), U*Uy,UU; € Ung,_, H,_ so by [4] Lemma 2.1.7 (iii),
there are X,Y € Un (V7,,,1 such that
V1 X = Uy, V1Y =UUj .
We put
Z:=V(A,X +B,Y).
By Proposition 6.2.5 ¢), Z € Un G,,. We have
V,Z = (AyU + B, U") (A, U*Uy + B,UU; ) = AUy + B, U
Vi (ZA,Z*) = (A Uo + B, U An(AUS + B, Ug) = A, = o, (ZA,Z") .
By Proposition 6.2.8 b, = by, thereis a Q € PrF, with 0,0 =ZA,Z*. By b), O ~¢ R.
From
0,0=7A,2" =V (A, X +B,Y)A,(A, X" +B,Y")V* =VA,V* = ¢,P
it follows Py ~9 Q = P (by [2] Theorem 2.1.9 a)).

d) By c), we may take U = 1g. Further we may take W = 1g and Q = A, in b), so
P~A,. [ |

PROPOSITION 7.2.2 Foreveryi€ {1,2} letU; € Un H, 1, V.eUnG,, and P, € PrF,
such that
v,V =AU+ B,U;, PP = VAV .
Put
X :=A 1140 +Cp 1 Co+Coi1 Gy + Byt 1 By, U =AU +B,U,

V.= X(A,,+1V1 +Bn+1V2)X, P .= X(A,H_]Pl +B,,+1P2)X R
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a) X €eUngEyp1, UeUnH,, VeUnGy, PePri,,.

b) lTln-s—lv:An+1U"’Bn-ﬁ—IU*, ¢n+1P:VAn+1V*o

a) We have
X? =Api1An+Ani 1By + Buy1Ay+ Bup 1By =1 .
Since X is selfadjoint it follows X € Ung E,+1 ([4] Lemma 2.1.3 (ii)) and so P € PrF",,H.
By Proposition 6.2.5¢), U € Un H,andV € Un én+1.

b) We have
XAn+1X = (An+1An + Cn+1CZ )X = An+1An +Bn+1An =A,,

XBy1X = (Cyy 1Co+Bny1By)X = Ay 1By +Byy 1B, = By,
XA X =A,11, XBy,X =By+1,
XAp1AX = ApiAy, XAp1BuX = Boi1A,,
XBn1AnX = Apy1By, XBp1BuX = By11By,
Vi1V = X(Aps1(AnU1 + BoUY) + Bug1 (AUz + ByU5 ) )X =
= An1AnU1 + B 1 AU + A1 BoUs + By 1 ByUy = Ay iU + B U™
VA1V =X (A1 Vi + Bust V2)XAu it X (Ap 1 Vi + Bt Vo )X =
=X(An1V1 + Byt 1 V2)An(Ana Vi + By V5)X =
= X (A 1V1iApAn 11 Vi + By 1 VoA By V5 )X =
=X(Ant1VIA V] + Bui1V2A V5 )X =
= X(Ans1QnP1 +Br1GuP2)X =
= Qni1 (X (Ant1PL + By 1 P2)X) = Ppyi P u

COROLLARY 7.2.3 There is a unique group homomorphism, called the index map,
01 : K\ (H) — Ko(F)

such that
81U = [Plo—[o,Plo

for every U € unH, where P satisfies the conditions of Proposition 7.2.1 a).
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By Proposition 7.2.1 a),b), the map
Vo :UnH, | — Ko(F), U+ [P]o—[c!Plo

is well-defined for every n € IN, where P is associated to U as in Proposition 7.2.1 a).
By Proposition 7.2.1 ¢), v,U = v,Uy for all U,Uy € Un H,_, with U ~; Uy. With the

notation of Proposition 7.2.2,
Va1 (AUt +ByUsz) = Va1 U = [Plo = [0, Plo =
= [Aps1PL 4 Bus1Pr)o — [0 1 (Ans1 P+ Bu 1 P2)]o =
= [PJo+ [PJo — [05 Pilo— [0 PaJo = VaUi + VuUs .
Thus by Proposition 7.2.1 d) (and Proposition 7.2.2), for U € Un H,_1,

Vot (FHU) = v 1 (AU 4By) = VoU 4 v, 1 = v,U .

Hence the map
viunH — Ko(F), Uwr—v,U

is well-defined, where U € Un H,_, for some n € IN. By Proposition 7.2.1 d), again, v
induces a map 6; : K;(H) — Ky (F'), which is additive by the above considerations. The
uniqueness follows from the fact that the map [-]; : un H — K, (H) is surjective. |

PROPOSITION 7.2.4 Let
0o—F%e L H —0

be an exact sequence in Mg and 0| its associated index map. If the diagram in Mg

0 F 2.6 Y. H 0
A s
0 F' G H' 0
(p/ w/

is commutative then the diagram

Ki(H) —2 s Ko(F)

Ki(p) | | #on

Kl (H/) —_— Ko(F/)
8

is also commutative.
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LetU e UnH,_,,V € UnG,, and P € PrE, with
W,V =AU +B,U*, PP =VA,V* .

Put
V=&,V eUnG,, P :=},P€PrF',.

Then
llv//nvl = li}/n&nv = Bnllv,nv = AanflU +Ban71U* )

(I;'nP/ — (I;/,,Qv’np = & PP = &, (VA,V*) = VAV

By Corollary 7.2.3 for &{, Proposition 7.1.6 c), and Proposition 6.2.2 ¢),

81K1(B)[U)1 = 8{[Ba-1U)1 = [Plo — [0} P'lo = [#uPlo — [0} #uPlo =

= [%Plo — [#a0 Plo = Ko(7)([Plo — [0, Plo) = Ko()81[U]; - u
PROPOSITION 7.2.5

a) 61 OKl(l[/) =0.

b) Ko(@)o 8 =0.

a)LetU € Un G,_; and put
V:=1U =AU +B, €UnG,.

Then
lvllnv - An(lvljnflU) +Bn 3

(‘/V/nV)An(‘i/nV)* = (An(‘lvfnflU) JFBn)An(An(‘pnflU)* +Bn) =A,,

so (by Proposition 7.1.6 c))

8K (W)U = 81 [¥-1U)1 = [An)o— o) AnJo =0.

b)LetU € UnH,_;,V € Un G,, and P € PrF, with

V.V =AU + B, U, P =VAV* .
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By Proposition 6.2.2 ¢) (since ¢ o 6F = %0 ),
Ko(9)81[U]1 = Ko(9)([Plo — [0, Plo) =

= [(/V)HP}O - [(pnG;fP}O = [qv)nP}O - [Gr?‘bnp]o =
= [VAnV*]O - [(GrzGV)An(GnGV)*]O = [AH]O - [AH]O =0. u

PROPOSITION 7.2.6 LetU € UnH,_,. There are V € é,, and P,Q € Pr F, such that
V*V € Pr Gy, v,V =AU,
GuP =1 V"V, PQ =1 —-VV", 61[U]1 = [Plo—[Qlo -
By Proposition 6.2.5 d), A,U + B,U* € Ung H,. Since W, is surjective, by [4] Lemma
2.1.7 (i), there is a Vg € Un G, with W,Vo = A,U 4+ B,U*. Put V :=VpA, € G,,. Then
V'V =AViVoA, = A, € PrG,
and
v,V = (V,Vo)A, = (A, U+ B, UMA, =A,U .
We have
Uu(lg—=V*'V)=1g—A, =B, = Y,(1g —VV™).
By Proposition 6.2.8 by = by, there are P,Q € Pr F,, with
O P=1g—V*V, ¢,0=1g—-VV*.

Put
W= A1 VACopt(1g = V*V)+Chp /(1 —VV*) +By1V* € Guy1

VA ::An + (Cn+1 +C;:+1)B” S En+] .

Since VV*V =V, V*VV* =V* and
W*=A,V* +C2+1(1E —VV)+Cp1(1g—=VV*)+ B, 11V,
we get

WW* = Ayl VV* + By (1 = V*V) +Ap 1 (1g —=VV*) + B, | V*V =
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=Ap1+Bup1 =1,
W*W = Ap1VV 4 Api1 (1 = VV) + Byt (1 — VV*) + By VV* =
=Ap1+Bur1=1g.

By Proposition 6.2.5 a),
Z*=A,+B,=1g

soWeUn Gn+1, ZeUnE,+1,and ZW € Un én+1. By the above and Proposition 6.2.5

a)’
lV//,H_]W =Ap1 AU+ (Cn+1 +CZ+1)Bn +Bn+1AnU* )

Vi1 (ZW) = Z§ W =
= (A + (Cor1 +Coy1)Bn) (At 1A U + (Coy1 + Gy )Br + B 1A U™ ) =
=An 1A U + By 1AyUS + By = Ay 1AU + B 1 AU + (Apy 1 +Buy1)Br =
=Ap1(AU +By) + By 1 (AU +By) .

We put
R:=Aui1(lg — Q)+ By PEPrFy .

Using again VV*V =V and V*VV* = V*,
Gui1R=A,11VV* +B, (1 =V'V),

WA 1 =Ap 1 V+Cop1 (1 -VTV),
WA W =A, 1 VV*+ B (1 —V'V) = ¢, 1R,
IWA A\ W*Z =Z(@p1R)Z = ¢p1(ZRZ) .

Since ZRZ ~og R and U ~| A,U + By, by the definition of J,
81[U]1 = 81[AU +By]1 = [Rlo— [0, R]o -
Since 7 o Yo ¢ = ", by the above,
al' P = n,¢.P = nty, (1, —v*V) =nllB, =B, =7l Q.
Thus by Proposition 6.1.3 (and Proposition 7.2.1 b)),

G{+1R =Aui1(1g = By) + By 1By ~0 Ay 1By + A 1Ay =
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=Ant1 =PLlE ~o 1

and we get
[Rlo = [1£ — Qo+ [Plo = [1£]o+ [Plo — [Qlo,

01[U]1 = [1g]o+[Plo — [Qlo — [1£]o = [Plo — [Qlo -

PROPOSITION 7.2.7 Ker & C Im K, ().

Let a € Ker 8, and let U € Un H,_; with a = [U];. By Proposition 7.2.6, there are

V € G, and P,Q € Pr F, such that V*V € Pr G,, W,V = A,U,

QP =1 =V*V, GO =1 —VV", 81[U]1 =[Plo—1[Qlo -

Then [P]o = [Q]o. By Corollary 6.1.6 a=-c, there is anm € IN, m >n+ 1, and an X € F,

such that

m m
= H Ai | P+ | 1g— H Ai
i=n+1 i=n+l

m m
=\ JTA)o+{1e— ] 4 -
i=n+1 i=n+1
Put W := ¢,,X. Then

W'W = ¢, (X*X) = (HA) lEV*V)+<lE'ﬁA,»>

i=n+1

=1E—<ﬁ A,»> Vv,
i=n+1
ww —1E—<H A)VV*

i=n+1

(ﬁA,)VV*WW*z(HA)V VW*W =0,

i=n+1
[T A |)vw=]| [] A |vw* =0,
i=n+1 i=n+1

(o) (L)
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m
= ( I1 A,-) VVAWW =1g,

i=n+1

(1)r-+) (7))

m
= ( I1 A,-) VV 4+ WW* =1,

i=n+1

m
( I1 Ai>V+WeUnGm

i=n+1
From

Vi (W*W) —1E<HA>1//mVV
i=n+1
:1E—<HA> Ap = Pn(WW¥),

i=n+1

since YW = ¥, $, X € E,, it follows

i=n

VW + (HA,-) cUnE,.

By the above,

(ﬁA,-) Uy,W* = ( 11 A) Y (W) =
i=n i=n+1
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By Proposition 7.1.3 and Proposition 7.1.6 c),

ElmKl(l[/). |
1

=Ki(y)

<f’1 >W

i=n+1

PROPOSITION 7.2.8 Ker Ko() C Im §,.

Let a € Ker Ko(¢). By Proposition 6.2.4, there is a P € Pr F, with
a=[Plo—[cL,Ply.
By Proposition 6.2.2 c),
0=Ko(@)a=[¢-Plo—[p-0"Plo.

Let n € IN such that P € Pr F,,. Then [¢_,Plo = [¢_,0%,,Plo. By Corollary 6.1.6
a=c, there is an m € IN, m > n+ 1, such that

(p—mP'i‘ (Bm)—> ~0 ¢—>n6inP+ (Bm)—> .

Put
Q:=P+(B,),cPrF,,.

Then
a = [Qo—[0%,Qlo, ¢smQ ~0 Pmo”,,0=0",0.
By Proposition 6.2.6, there are k e N, k > m+2,and W € Un Gv_>k with

W(¢mQW*=0",,0.

It follows
(65 QW =W (GonQ)W'W = W (¢ 0).

(lpakw)(cikQ) = (llyakw)(llv’ak(lv)akg) = l/V’—>l<(qu)—>kQ) =
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= ¥or((65, QW) = (65, 0) (Vi W) -

Put
U:= (l[vl_>kW)(15 - Gf)kQ) +Gf>kQ S I‘VI_”( .
Then
UU* =U"U = I, UcUnH_;.
Put
Vii= (Aen1) (1 — 65, Q)W + (Bt ) 05,0 € Giy -
Then
Vi = (Aes1) W (1g — 65,0) + (Bey1) 05,0,
ViVi = (A1) (1 — 654Q) + (Bis1) 65,0 € PrEgyy
ViVi = (A1) W (1g — 05 QW + (Biyr) 05,0 =
= (Ag1)=(1g =W* (05, Q)W) + (Byy1)—07,0.-
Put

Z:=(1g—05,0) + ((Ces1)= + (Ci11)=)05 10 € By -

By Proposition 6.2.5 a),
22:(1E_GikQ)+GikQ=157 ZeUnEy,,

ZVi = (A1) (1g — 05, QW + (G ) 07,0,
Vi=2ZViZ= (A1) (1g — b, 0W (1 — 6%,,0)+
+(Cis) - (1 — 05, 0)Wl, 0+ (Ary1) 05,0 € G,
¥V = (Ar) = (1 — 05 Q)W W + (A1) 05,0 = (Ak1) U,
VV* = ZV\ViZ € Pr Egs1, V'V = ZViViZ,
lg—VV* =Z(1g —V\V{)Z =
= Z((Ak41) 05,0+ (Bey1) (1 — 65,0))Z,
lg—V*V =Z(lg —ViV)Z =
= Z((As1) =W (65 OW + (Biy1) - (12 — 65,,0))Z =

= Z((Ak1) > P 1Q+ (Bi1)— (1g — 65,,0))Z,
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¢k 11(Z((Ak41) - 0+ (Big1) - (12 — 05,0))2) =
= Z((Aks1) PO+ (Biy1) - (1e — 65,0))Z = 1g = V'V,
O i1 (Z((Aks1) = 65,0+ (Biit) = (1 — 65,,0))2)) = 1g = VV*.
By Proposition 7.2.6,
81[UN1 = [Z((Ak1) - Q@+ (Biy1) - (12 — 65,,0))Z)o—

—[Z((Ak1) =05, Q+ (Bis1) = (1g — 65,)0)Z)o = [Qlo — [0/, 0o =a..
Thus a € Im 0.

THEOREM 7.2.9 The sequence

dy

) Y K (H) 25 Ko(F) 28 Ko (G) Y

K(F) "3 k(G

is exact.

The exactness was proved: for K;(G) in Proposition 7.1.9, for K; (H) in Proposition
7.2.7 and Proposition 7.2.5 a), for Ko(F) in Proposition 7.2.8 and Proposition 7.2.5 b),

and for Ko(G) in Proposition 6.2.8 c).

7.3 K1 (F) ~ K()(SF)

DEFINITION 7.3.1 Let F be an E-C*-algebra. We denote by CF the E-C*-algebra of
continuous maps x : [0,1] — F with x(0) = 0 and by SF its E-C*-subalgebra
{x€CF | x(1) =0} (Definition 2.1.1 or [2] Corollary 1.2.5 a),d)). Moreover we denote

by O : K| (F) — Ko(SF) the index map associated to the exact sequence
0—SF-scrdhF 0,
in Mg, where i is the inclusion map and
jr:CF —F, x+—x(1).
IfF 2 Gisa morphism in Mg then we put
So:SF — SG, x— @ox,

Cp:CF —CG, x——@ox.
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It F -2+ G - H are morphisms in Mz then S(y)oS(p) =S(yoo).
THEOREM 7.3.2 Of is a group isomorphism for every E-C*-algebra F.

CF is null-homotopic ([4] Example 4.1.5 or Proposition 2.4.1), so by the Homotopy
invariance (Theorem 6.2.11 e), Proposition 7.1.8 e)), it is K-null. By Theorem 7.2.9, the

sequence
Ki(CF) "8 K\ (F) 25 Ko (SF) ") ko (CF)
is exact, so Of is a group isomorphism. [ |

PROPOSITION 7.3.3 Let F and G be E-C*-algebras.

a) Forall (x,y) € (SF) x (SG) put
—~
() :[0,1] — FxG, s (x(s),5(s)) -

Then the map

(SF) x (SG) — S(F xG), (x,y) |—>(fx/,\y\)

is an isomorphism in Mg (Definition 1.1.2).

b) Ki(F)x K(G) =~ K| (F x G) (Product Theorem).

a) is easy to see.
b) By Theorem 7.3.2, the maps
OF x 9(;

Ki(F) x K1 (G) "% Ky (SF) x Ko (SG),  Ki(F x G) 2§ Ko(S(F x G))

are group isomorphisms. By a), Ko((SF) x (SG)) =~ Ko(S(F x G)) and by Corollary
6.2.10b), Ko((SF) x (SG)) =~ Ko(SF) x Ko(SG). Thus

K1 (F) x K{(G) = K, (F X G) . |
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COROLLARY 7.34 Let F 5 F', G % G' be morphisms in Mg and
OXY:FxG—F'xG, (x,y)— (¢x,yy).
Then @ X Y is a morphism in Mg and

Ki(@ x y) = Ki(@) x Ki(y)

forallie {0,1}.
The assertion follows easily from Corollary 6.2.10 b) and Proposition 7.3.3 b). [

PROPOSITION 7.3.5 (Product Theorem) Let (Fj)jc; be a finite family of

E-C*-algebras, F := [] F; (Definition 1.1.2), and for every j € J let @; : F; — F be the
JjeJ
canonical inclusion and y; : F — F; the projection. Then for every i € {0, 1},

D: in(Fj) — Ki(F), (aj)jes— Z;Ki((Pj)aj
JE JjE

is a group isomorphism and

W Ki(F) — HKi(Fj)7 ar— (Ki(y))a) jes
je

is its inverse.

® and ¥ are obviously group homomorphisms. For j,k € J, y;o @ = 0if j # k and
Vj o @; = idr;. Thus for (a;) je; € [1 Ki(F;) and k € J,
JjeJ

(WD (aj)jes)k = Ki(wi) Y Ki(@j)a; = ax
jed
i.e. Wod is the identity map of [] K;(F;). Since Y. @;oy; =idp, for a € K;(F),
jel jel
PWa = O(Ki(y))a)jes = ) Ki(9))Ki(yj)a=Ki (Z @jo ‘/’j) a=a
jeJ JjeJ

i.e. q)o\P:idK,-(F)' .
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THEOREM 7.3.6 (Continuity of K1) Let {(F)icr, (¢ij)i jer} be an inductive system in
Me and let {F, (¢;)ic1} be its limit in Mg . By Proposition 7.1.8 a),

{(K1(F))iers (Ki(@ij))ijer}

is an inductive system in the category of additive groups. Let {4, (W;)ic1} be its limit in
this category and let ¢ : 4 — K (F) be the group homomorphism such that yo y; =
K\ (@) for everyi € I. Then y is a group isomorphism.

By [4] Exercise 10.2, {SF,(S@;)ic;} is the limit in 9z of the inductive system
{(SF)ic1, (S@ij)ijer}. By Theorem 6.2.12, {Ko(SF),(Ko(S®i))ici} may be identified
with the inductive limit in the category of additive groups of the inductive system
{Ko(SF;)ier, (Ko(S@ij))i,jer} and the assertion follows from Theorem 7.3.2. |

v

. et
PROPOSITION 7.3.7 Let F be an E-C*-algebra,n€ N, U € UnF,_1,V €Un (CF ),

P
and P € Pr ( SF ), such that

JFV =AU +B,U*, ipP =VA,V* .
Then
6 [U]1 = [Plo — [0," Plo.
The assertion follows from Corollary 7.2.3 and Definition 7.3.1. [

PROPOSITION 7.3.8 If F -* G is a morphism in Mg then the diagram

K
K(F) 2% ki (6)

o | I

Ko(SF) —— Ko(SG)

Ko(So)
is commutative.
The diagram
0 SF — 5 cr 0
S% Cfpl lfp
0 SG CcG G 0
iG JG
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7.3 K] (F) ~ K()(SF)
is commutative and the assertion follows from Proposition 7.2.4. |

Remark. By Theorem 7.3.2 and Proposition 7.3.8, the functor K| is determined by the
functor Kj.

COROLLARY 7.3.9 (Split Exact Theorem) If
¢ Y
0—F—GrH—0
is a split exact sequence in Mg then

Ki(9) faw
O—)Kl(F)ﬁ>K1(G) K1 () K1<H) —0

is also split exact. In particular the map
Ki(F)xK\(H) — Ki1(G), (a,b)— Ki(¢p)a+K;(A)b

is a group isomorphism and K, (F) ~ K (E) x K, (F).

By Theorem 7.2.9, the sequence

) K(G) )=

© ko (G) Y

Ki(F) 2% k,(G) ™ Ky (1) -2 Ko(F Ko(H)

is exact and by Proposition 7.1.8 a) and Proposition 7.1.6 d),

Ki(y)oKi(y) =Ki(yoy) = Ki(idy) = idk,(u) -

It remains only to prove that K (@) is injective.

It is easy to see that

Se ¥
O—>SF—>SG{slSH—>0

is split exact. By Proposition 6.2.9, Ko(S¢) is injective and by Proposition 7.3.8, the
diagram

Ki(F) 22 k(6

o | I

Ko(SF) —— Ko(SG)
Ko(So)

is commutative. Since O is injective (Theorem 7.3.2), K (¢) is also injective.
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The last assertion follows from the fact that

=

0—F- L F #E—0
is split exact. u
COROLLARY 7.3.10 Let
0—F %Gy H—0, OHF’L'G%H’HO
be split exact sequences in Mg and
FLF 656, B LH

morphisms in Mg such that the corresponding diagram is commutative and let i € {0,1}.

a) If we denote by
¢ : Ki(F) x Ki(H) — Ki(G), (a,b) — Ki(@)a+Ki(7)b,
¢ Ki(F') x Ki(H') — Ki(G'), (d,b') — Ki(@")d' +Ki(Y )b
the group isomorphisms (Proposition 6.2.9, Corollary 7.3.9) then
Ki(n) oKi(9) = Ki(¢) o (Ki(A) x Ki(V)) .

b) If we identify K;(G) with K;(F) x K;(H) using ¢ and K;(G") with K;(F') x K;(H")
using ¢’ then

Ki(u) : Ki(G) — Ki(G'),  (a,b) — (Ki(A)a,Ki(V)b) .

a) For (a,b) € Ki(F) x K;(H),
Ki(n)Ki(¢)(a,b) = Ki(u)(Ki(@)a+Ki(y)b) =

= Ki(¢")Ki(A)a+Ki(Y)Ki(v)b = Ki(¢") (Ki(A) x Ki(V))(a,D) .

b) follows from a). [ |
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8.1 The Bott Map
8.1 The Bott Map

LEMMA 8.1.1 Let F be a full E-C*-algebra and n € IN. We identify SF with
%o (M\ {1}, F) in an obvious way.

a) i:={Xe¥,F)| X(1) € E} is afull E-C*subalgebra of € (I, F).

v

~~
b) If we put for every (o,,x) € SF
—~

(a,x)  T—F, z+— o+x(2)

then the map

v

~=~
v SF —F, (ax)— (a,x)

is an E-C*-isomorphism. Thus the map
A~
Yo: | SF |u— (F)n

is also an E-C*-isomorphism.
¢) ForeveryY € (Fp), put

V' T—F, z— ) (Y()@idk)V; .
teTy,

ThenY € { X € €(I,F,) | X(1) € E, } for every Y € (F), and the map
0" (F)n — {X€CMF) | X(1)€E,}, Yr—Y
is an E-C*-isomorphism.
d) The map 5
0" o v <’§F>n—>{Xe%a,Fn>|x<1>eEn}

is an E-C*-isomorphism. We identify these two full E-C*-algebras by using this

isomorphism.The map
A~
Un (SF )n —{Xe€M,UnF,)| X(1)eUnE,}
defined by ¢" o y,, is a homeomorphism.
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e) For every
X = ¥ ((04.X,) ®idg)V € <’§F>
=
and z €7,
(0"yuX)(2) = ). (&1 + X, (2)) @id )V € F,
teTy,
(0" X)(1) = Y (04 ®idg)Vi €Ey .
teTy,

f) Consider the split exact sequence in Mg (Definition 4.1.4)

SF A~ SF
0— SF-='SF ¢ E—0.

Then
(%)X = (9"yuX) (1)

~~
forevery X € (SF >,,.

g) IfF % Gisa morphism in € then, by the identification of d), for every X € € (I, F,,)
with X (1) € E,, and for every z €T,

( (@) nX ) (2) = @uX(2) .

A=
b) For (o,x),(B,y) € SF ,y€ E,and z €T,

a) is obvious.

—_ —_—
(0,%))"(z) = a" +x(2)" = (a,x)"(2),

—~

—~ A

(0, x)(2))((B,¥)(2)) = (¢ +x(2)) (B +¥(2)) = aB 4 ay(z) +x(2) B +x(2)y(z) =
= (af,ay+Bx+xy)(z) = (a,x)(B,y)(2),

—~—
(1,0)(=) =7,

—~ =
so Y is an E-C*-homomorphism. If (@, x) = 0 then for all z €T

oa=a+x(1)=0, x(z)=o+x(z) =0, x=0,
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S0 VY is injective.
Let X € Fyand put @ := X (1) € E and

x:T—F, z—X(z)—X(1).

<
Then (a,x) € SF and for z €T,

——
(a,x)(z)=a+x(z) =X(1)+X(z) =X (1) =X(2) .

~
Thus (@,x) = X and y is surjective.
By [2] Corollary 2.2.5 and [2] Theorem 2.1.9 a), y, is an isomorphism.

c) follows from [2] Proposition 2.3.7 and [2] Theorem 2.1.9 a).

d) follows from b) and c).

e) We have
N — .
WHX = Z ((Otl,X;) ®ldK)‘/t 5
1€T,
(9"wuX)(2) = } (& +X,(2)) ©idi)V; € Fy,
1€T,

0"y X)(1) = Z (o4 ®idg)V, €Ey .

teTy,

f) and g) follow from e).

The Bott Map

DEFINITION 8.1.2 We put for every full E-C*-algebra F, n € IN, and P € F,,

PM—F,, z—zP+(lg—P).
By the identification of Lemma 8.1.1 d),
~ =
Pe{Xe¥@,UnF,) | X(1)€E,}=Un (SF >n

for every P € Pr F,. Obviously, 0= 1g and TE =zlg.
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PROPOSITION 8.1.3 IfF is a full E-C*-algebra, n € IN, and P € Pr F,,_ then
A~
757 P—pfP.

(with the identification of Lemma 8.1.1 d)). Thus we get a well-defined map

v

~ =
Vg :PrF., — un SF

with VpP = ﬁfor everyPe PrF_, = |J PrF.,,.
nelN

For z €T,

(f:‘;l?ﬁ)(z) = (AP +B,)(2) = Au(zP+ (15— P)) + B, =
— AP+ (15 —AP) = PEP(2) . u
PROPOSITION 8.1.4 For every full E-C*-algebra F there is a unique group
homomorphism
Br : Ko(F) — K (SF) (the Bott map)
such that for every P € Pr F_,
Br[Plo = (VeP)/ ~1= [P], .
Let P,Q € Pr F_, with P ~y Q. By Proposition 6.2.6, there are m,n € IN, m > n+2,
and U € Ung F,, with P,Q € Pr F,, and UPU™* = Q and so
(UPU*)(z) = UP(z2)U* = zUPU* + (1 —UPU*) = Q(2)
for every z €. Thus UPU* = é P~y é and P ~; Q

Let PO € Pr F_, with PO = 0. We may assume P,Q € Pr F,_| with P = PA,, and
Q = OB, for some n € IN (Proposition 6.1.3). For every z €T,

ﬁ(z) =zPA, + (1E _PAn)v Q(Z) =z0B, + (1E - QBn)a

(PQ)(z) = P(z)0(z) = zPAy +z0B, + 1 — OB, — PA, =
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8.1 The Bott Map

—_—~ e~

=z2(P+0)+(1g—(P+0Q)) = (P+0)(2), PO=P+0Q.

By Proposition 6.1.9, there is a unique group homomorphism
ﬂp : K()(F) — K] (SF)

with the required property. [

PROPOSITION 8.1.5 Let F be an E-C*-algebra .

a) There is a unique map Br : Ko(F) — K, (SF) (called the Bott map) such that the

diagram

F
KO(F) Ko(l ) v

pe | | 2

K| (SF) ——— K;(SF)
Ky (81F)

is commutative. Bp is a group homomorphism.

b) If F is a full E-C*-algebra then the above map Br coincides with the map Br
defined in Proposition 8.1.4.

c) IfF 2 Gisa morphism in Mg then the diagram

K
Ko(F) 9% ky(G)

pr | | s

Ki(SF) — K\(SG)
Ki(So)

is commutative.

¢) for €¢ with F —® G unital. For n €IN,P e PrF,, and z €T, by Lemma 8.1.1 g),

((’@) nﬁ) (2) = 20uP+ (12— 9uP) = (9uP) (2).
(A) -
So |.P=¢,P.
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By Proposition 6.1.10 c), Proposition 8.1.4, and Proposition 7.1.6 c),

K1(S9)Br[Plo = Ki1(So) [P} 1
- Kg;) | = [@rP], = BelouPlo = Boko(0) P,
1

Ki(S¢)oBr = BcoKo(®) .

a) By ¢) for €, the diagram

F
Ko(F) 27N k()

B | | e

K{(SF) —— K{(SE)
Ki(Snt)

is commutative. By Proposition 6.1.12 ¢) and Corollary 7.3.9 the sequences

Ky(iF) Ko(nF)

O—>K0(F) KQ(F)

Ko(E) — O,

Ky (sif) v\ Ki(szl)

0 — K| (SF) ———— K, (SF) — Ki(SE) —0

are exact, since the sequence

SiF st
0— SF— SF gr SE—0
is split exact. By the above c) for €g, Corollary 6.2.3 a), and Proposition 6.2.2 ),
Ki(S7") o BroKo(1") = Be o Ko(n") o Ko(1") =

= BroKo(n" 01") = BroKo(0) =0.
Thus
Im(ByoKo(1F)) C Ker Ky (Sa™) = ImK; (S1F) .

The assertion follows now from the fact that K; (St is injective.

b) By c) for €, the diagram

F
Ko(F) U k()

pe | |2

Ki(SF) —— Ki(SF)
Ki(5iF)
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is commutative, with B defined in Proposition 8.1.4. By a), this BF coincides with Bg
defined in a).

¢) The following diagrams

(So)

F—25¢ SF % G K (SF) 2%k (s6)
LFl llc SlFJ, lslc K (SlF)l lKl (519)
F—— G SF —— SG K (SF) —— K (SG)
¢ S¢ K1(S9)

are obviously commutative (Proposition 7.1.8 a)). So by a) and ¢) for € (and Corollary
6.2.3 a), Proposition 7.1.8 a)),

Ki(S19) 0 B o Ko(9) = B 0 Ko(19) 0 Ko() = Bz 0 Ko(@) 0 Ko(1F) =

=K (5¢) o BroKo(1") = K (S) o Ky (S17) 0 Br = K1 (S19) 0 K (S@) o B -

The assertion follows now from the fact that K1 (St) is injective. [
8.2 Higman’s Linearization Trick

Throughout this section F' denotes a full E-C*-algebra, m,n € IN, and [ := 2" — 1.

DEFINITION 8.2.1 We shall use the following notation ([4] 11.2):

Trig(n) := {X € €(M,GLg,(Fy)) | X(z) = i ap?’,a, € Fn} ,

p=0

Pol(n,m) := {X € ¢(,GLg,(F,)) | X(z) = i apz’,a, € Fn} ,
Pol(n) := | Pol(n,m), Lin(n) := Pol(n,1),
meN

Proj(n) ::{ﬁ‘ PGPan} .
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LEMMA 8.2.2

a) If X € €(M,GLg, (F,)) then there are k € IN and Y € Pol(n) such that 7*X is
homotopic to Y in €(I,GLg,(F,)).

b) If P,Q € PrF, such that P and Q are homotopic in € (W, GLg, (F,)) then there are
k,m € IN such that 2P is homotopic to 7°Q in Pol(n,l).

a) It is possible to adapt [4] Lemma 11.2.3 to the present situation in order to find a
Z € Trig(n) such that
11
IX-z|<|x7"| .

By [4] Proposition 2.1.11, X and Z are homotopic in € (I, GLg, (F,)). There is a k € IN
such that Y := zXZ € Pol(n). Then z*X and Y are homotopic in €' (I, GLg, (F,)).

b) The proof of [4] Lemma 11.2.4 (ii) works in this case too. |

DEFINITION 8.2.3 The map

m
{Ovl}m—>INlU{0}7 j'_>2ji2l71

i=1

is bijective. We denote by
N;U{0} — {0,1}", p~—|p|
its inverse. For every i € Ny, and p,q € ;U {0} we put

Anyi it pli=lqli=0

“if |pli=0,|gli =1
(poay={ Cri I Pi=0.ldl
Coti if |pli=1,]qli=0
Buyi if |pli=|qli=1
LEMMA 8.2.4
a) For p,q,r,s € NyU{0} and i € N,
0 if |ql; # |li
(p,q)i(r,s)i = .

(pys)i it |qli=rli
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In particular
0 if g#r
((pacI) ( )l)_ I_]l(pv )i if g=r

=

1

b) For p,q € NJU{0} and i € Np,

(p,q)i if |pli=0
An ] 5 | — )
+i(p,q)i { 0 it |ph=1
Q)i if |gli=0
T s gl

0 if gli=1

In particular

p#0=[](Awi(p,q))) =0,
i=1

q#0= ]ﬂ[((pvq)iAm) =0,
i=1

I m 0 if g#0
(Anti(nr—q)i) =4 = .
,g:,g ! l 1I=I1An+i if ¢g=0
I m
c) X Il(p.p)i= 1k
p=0i=1

a) and b) is a long verification.
¢) For every p € INJU{0} put
Jp={i€Nn||pli=0}, Kp:={i€Nn||pli=1}.

Then

m / I m
1g :H(An+i+Bn+l = Z (HA”'H) <H B"‘H) = Z H(pap)i- u

i=1 p=0 \i€J, iek, p=0i=1

LEMMA 8.2.5 Leta < (F,) and
1

:i%z

p=1 q=pi

(4,9—p)i (X € Fusn) -

:s

1
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a) X¥" =o.

b) 1g —X is invertible.

a) We put D :=IN; and for every k € IN and p € DF,

v._y ®._ T
) =) ri. ap ::H"m'
Jj=1 J=1

We want to prove by induction that for every k € IN,
X [ m
=Y a) Y Tl@a—pr").
FEDk q:p(k) i=1
The assertion holds for £ = 1. Assume the assertion holds for k € IN. Then

Y- ¥ Yalay ¥ Y

peDk p'eD g=p®) ¢'=p

((g.a—p™)i(d',d' = P)i) -

:5

/i

I
=

By Lemma 8.2.4 a),

1 m
Xk = ZZapap/ Z qu p ):
i=1

pEka eD q= p(k)

=Y a Z qu P,

pGDkH g=plk+1) i=

which finishes the inductive proof. Since p(k) > k for every k € IN we get X2 = 0.

!
b) By a), 1z + ¥, XX is the inverse of 1z — X. [ |
k=1

PROPOSITION 8.2.6 (Higman’s linearization trick) There is a continuous map
W : Pol(n,l) — Lin(n+m)

m m

such that uX is homotopic to X | ] An+i) + (IE -1I An+i) in Pol(n+m,2l+ 1) for
i=1 i=1

every X € Pol(n,l). If X € Proj(n) then the above homotopy takes place in Lin(n+1).
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Assume X € Pol(n,l) is given by
l
X = Z ayz’,
p=0
where a,, € F, for every p € IN;U{0}. Put
!
Xp =) ag™’ (€ ¢, F))
4=p

forall p € IN;U {0} and for all s € [0, 1],

! m
Yoi=1p—s Y, X, [](0,p); (€ €W, Fyim)),
! I m
+SZZqZHrr_ (echLFner))'
g=1 r=qi=1
By Lemma 8.2.4 a),
! m ! m
Y(lg+s Y X, [1(0,p)i) = (e +s5 Y, X, [ J(0,p)))Y; =
p=1 i=1 p=1 i=1

=1p+s ZXXH (0,p)i(0,9);) =

p.q=1 i=
so ¥; is invertible. By Lemma 8.2.5 b), Z; is also invertible. Thus for every s € [0, 1], ¥;
and Z; are homotopic to 1g in € (I, GL(F, 1)) and belong therefore to Pol(n+m,l). By
Lemma 8.2.4 ¢),

I m

1
DN (=
q=0 r=qi=1
Put
m ] m I m
ux = 1E—HAn+i+ZaPH(07P)i_ZZHpp_l E%(]IaFer))'
i=1 p=0 =1

p=1li=1

For z €T,

/
((uX)Z1)( Zz”z

p=0 gq=pi

m

! l
(@:9=p)i= L 2" Y [1(Ansila.a=p)i)+

p=0 g=pi=1

:|§

Il
—_
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m

((p,p—1)i(r,r—q)i) -
1

+zapzqzn O.p)(rr—q izqﬂii

P:g=0 r=qi= p=1r=qi=
By Lemma 8.2.4 b),

i I m
Z Zp Z H(Al’l+l 9,9 — p HAn+t

= Z sl Z anrrH(Ovr)i = Z Z < aﬂPH‘H(Ovr)l =
q=0 r=0 i=1 r=0g=0 i=1
| m 1 m
30 § (LI 38 § (L8
r=0s=r i=1 r=0 =1

[ m
*qu“ Z pr q—1)i= z"Zpr q)i

p=q+li= g=1 p=qi=1
Thus by Lemma 8.2.4 ¢),

m

] /
( ,uX Zl qu ZH p,p— q HA11+1

q=0 p=qi=1
l m i m
+Y X JJ0,7: = Y 2 Y [T(p.p—a)i
r=0 =1 q=1 p=qi=1
I m m i m m ] m
= Z H(p7p)i - HAn—H' + ZXrH(Ov r)i=1lg— HAn-H"" Z Xp H(Ovp)i .
p=0i=1 i=1 r=0 =1 i=1 p=0 =1

By Lemma 8.2.4 a),b), for z €T,

] m

! m
(Y1(uX)Z1)(2) = 1p — HAH, + Z X,,H (0.p)i = X X [1(0.p)i+

i=1 p=1 i=1
m

1 1 l
+ Y X0, pidn) = Y, Y XX,
p=1

i=1 p=14¢=0 i

:s

P)i(0,9)i) =

Il
—_
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m m m m
=1lg— HAn+i +Xo H(Ovo)i =1g— HAn+i +XHA;1+1' .
i=1 i=1 i=1 i=1

Since 1 — HAH, +x! HA,H, is the inverse of Y} (uX)Z; it follows that Y} (uX)Z;
=1

and uX are 1nvert1ble i.e. they belong to € (I, GL(Fy+y)). Thus for every s € [0,1],
Y(uX)Zs € €(M,GL(Fy4m))- Let z €T and let

[0,1] — GL(F,), s+ xs
m m
be a continuous map with xo = X (z) and x; = 1. Since 1g — [ Apyi+x; ! H A, is the

i=1

inverse of 1 — H Api+ X H Ay for every s € [0, 1] it follows that the map

i=1 i=1

m m
[0,1] — GL(Fuym), s+ lg—[JAnvi+xs [ JAnti

i=1 i=1

is well-defined and it is a homotopy from (Y;(uX)Z)(z) to 1g ie.
Y1(uX)Z) € €M, GLy(Fytm)) and Y1 (uX)Z, € Pol(n+m,l). By the above, for every
s €[0,1], Ys(uX)Zs € €M, GLo(Fym)), s0 Ys(UX)Z € Pol(n+m,2l +1). Hence uX is

homotopic  to X(ﬁAn+i) + (1E—ﬁAn+,-) in Pol(n + m2] + 1) and
i=1 i=1
uX € Lin(n+m).

In order to prove the last assertion remark that there is a P € Pr F, with X = P=
(IE—P)+ZP. Thenm=I1=1,a0=1g —P,a1 =P, X; =ay =P,

uX = 1g —PA,+1 +PC;+1 *ZCnJr] s
and for every s € [0, 1],
Yo=1p—sPCl,,  Zyi=lp+s:Cuyr,  Y(uX)Z € Lin(n+1).

Thus uX is homotopic to ¥; (uX)Z; in Lin(n+1). |

8.3 The Periodicity

Throughout this section F' denotes a full E-C*-algebra, m,n € IN, and / :=2" —1.
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LEMMA 8.3.1 If X € ¥(I,GL(F,)) and X(1) € GLg,(F,) then

X e ¢M,GLg,(F,)) .

Let 6 € [0,27x[ and for every s € [0, 1] put
Y, T — GL(F,), z+— X(e "z).
Then Yy(e'®) = X (/%) and Yg(e'®) = X(1) so X(e') is homotopic to X (1) in GL(F,).
Thus X (e'®) € GLg, (F,) and X € €(I,GLg, (F,)). |

PROPOSITION 8.3.2 The following are equivalent for every X € F,,.

a) X € Lin(n).
b) z€T\{1} = X(z) € GL(F,).

¢c) Xisa generalized idempotent of F, ([4] Definition 11.2.8).

a = b is trivial.
b= a. By Lemma 8.3.1, since X (1) = 1z, X € ¢(I, GLg, (F,)) so X € Lin(n).

b< c. Forz €T\ {1},

X(@z2)=Gz-D)X+1g=(z—1) <X—1115) :

-z
{11—2 ze"][\{l}}:{aeC|real(a)=;},

b) holds iff X — a1 is invertible for every o € T with real(a) = %, which is equivalent

toc). [ |

Since

LEMMA 8.3.3 Forz €T,

Ay +By~,Ap+zB, in UnkE,.
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We have
(Co+C)(zAn+By)(Cr+Cy) = (z2C +C)(C +C) = 2B, + Ay

and the assertion follows from Proposition 6.2.5 a). |

LEMMA 8.3.4 Forz €,

1

m I m
Zl HAn+i + Z H P, p i ~h HAn+z Z
i=1 i=1

p=li=1 p=1i

':js

)i in UnEpiy.
1

Let k € IN; and let j € IN,,, with |k|; = 1. By Lemma 8.3.3,

k—1 m

L m
Zk+1HA+l+ZZpr1+ H(pp)

p=li= p=ki=1

= (ZlkHAn+i+H(k>k)i> (2Antj+ (k. k) )+
i=1 i=1
k=1 m

+ZZpr + Z HPP'Nh

p=li= p=k+1i=1

m m
~p <Zl_k HAnJri + H(k, k)l> (AnJrj +Z(k,k),)+
i=1 i=1

k—1 m

I m
+2Y [Ite.p)i+ Y T]p.p)i=

p=1i=1 p=k+1i=1

”HAH,HZHM + Z [1(v-p)

p=li= p=k+1i=1

in Un E,4,,. The assertion follows now by induction on k € IN;. [ |

LEMMA 8.3.5 Let P,Q € PrF,.

a) Forevery z €T,
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m m
=P(z) (HAnJri) +z <1E - HAn+i> .
i=1 i=1

b) If (with the identification of Lemma 8.1.1 d))
An+i> ~h
1

S m
P(HA11+1'>+<1E_
i=1
[ n | SN
Q<HAn+z> + <1E HAn-H'> in Un <SF>n+ma
i=1 i=1

jamE

then
p <HAn+i> + <1E —HAn+i> ~h
i=1 i=1
u . A~
~p Q HAn+t + Apyi in Un | SF |ptm-
i=1
a) We have
m m
P HAn+l +(1e—- HAn+i (Z) =
i=1 i=1
m m
=zP HAn+z +z| 1g— HAn+i +HAn+i+
i=1 i=1
m m m
+( 1 _HAn+i —-P HA11+1 - _HAn+i =
i=1 i=1 i=1
— m m
=P@E) | [[An+i | +2{1e—]]Ansi | -
i=1 i=1
b) Let

A~
[0,1] — Un (SF),,WL,,,7 s— U

be a continuous map with
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o m m
Ul == Q (HAilJri) + <1E - HAn+i> .
i=1 i=1

m m
Put U] := Us< An+,'> +z <lE ]_[An+,'> for every s € [0,1]. Then s +— U] is a
1 i=1

1
continuous path in Un ( SF > n+m and by a),

m m
Uy = Uy <HAn+i> +z <1E - HAn+i> =
j= i=1

i=1

=P (ﬁ&w) +z <1E - ﬁfhm) =

i=1 i=1
P(

Uy=0

An+i> + (15 ﬁAn+i> (@),
1 i=1

=

m

1

i=1

7 N

An+i> + <1E ﬁAn+i> (Z) . [ |

1

PROPOSITION 8.3.6

v

~~
a) IfUeUn | SF |, then there are k,m € IN and P € Pr F,,, such that (with the

identification of Lemma 8.1.1 d))

0 (TTA A ) B =
U ([TAnsi |+ [ 1e=]JAnsi | ~n P in Un { SF |uim-
=1 i=1

1

-~ A<
b) Let P.Q € PrF, with P ~, QinUn <SF )n Then there is an m € IN such that

m m
P (HAn+i> + <1E - HAn+i> ~h
i i

i=1

3

m
~n O (HAM-) + (15 - A,H,») in PrF,.
i=1 i

Il
-
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a) By Proposition 8.2.2 a), there are k,m € IN, k < 2™, and X € Pol(n,1) such that Z*U
is homotopic to X in € (I, GLg(F,)). By Proposition 8.2.6, there is a ¥ € Lin(n+m) with

X (HA,,+,~> + (15 —HA,H_,~> ~nY in Pol(n+m2l+1).
i=1

i=1

By [4] Lemma 11.2.12 (i), there is a P € Pr Fy, with Y ~, Pin Lin(n+m). Thus

(Z*u) <ﬁAn+i> + <1E _ﬁAn+i) ~n
i=1 i=1

m m
~p X ( An+i> + <1E - HAn-H'> ~p Y ~p P
i=1 i=1

in €(T, GLg(Fy4+m)). By [4] Proposition 2.1.8 (iii) and the identification of Lemma 8.1.1

d)?
m m _ A~
(ZkU) (HAVL+I> + <1E - HAn+i> ~h P in Un < SF ),H,m .
i=1 i=1

1

b) By Proposition 8.2.2 b), there are k,m € IN, k < 2™, such that #*pP ~n zké in Pol(n,I).
By Lemma 8.3.4 and Lemma 8.2.4 ¢),

m m m m
Z (HAn+i> + (15 _HAn+i> ~h ( An+i> +z <1E —HAn+i>
i=1 i=1 i=1 i=1

inUn E,4,,. By Lemma 8.3.5 a),

P <ﬁAn+i> + <1E _ﬁAn+i> (2) =
i=1 i=1

(i) (o f10))-
y <13(z) (ﬁA"”) + (15 —ﬁAn+,->) ~y
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~h Q <ﬁAn+i> + <1E ﬁAiz+i) (Z)
i=1 i=1

in Pol(n+m,!). By Proposition 8.2.6,

P (HAn-H) + <1E - HAn+i> =
i=1 i=1

m m m m
=P (HAn+i> + <1E _HAn+i> < An+i> + <1E —HAn+i> ~h
i=1 i=1 i=1 i=1
An+i> ~p
1

~p | P <HAn+i> + (15 -
i1 i
~h | Q <HAn+i> + (15 —HAn+i> ~h

jamE

i=1

~n O <HAn+i) + (15 - HAn+i>
i1 '

in Lin(n+m). By Lemma 8.3.5 a),

m m m m
p (HAn+i> + <1E —HAn+i> =P <HAn+i> +z <1E —HAn+i> ~h
i=1 i=1 i=1 i=1

~n Q (HAn+i> +z (15 - HAn+i> =0 (HAn+i> + (15 - HAn+i>
i=1 i=1 i=1 i=1

in Lin(n+ m). The assertion follows now from [4] Lemma 11.2.12 (ii). |
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THEOREM 8.3.7 The Bott map is bijective.
Step 1 Surjectivity

A~
Leta € K| (SF). Therearen € Nand U € Un | SF |, witha = [U];. By Proposition
8.3.6 a), there are m,p € IN, p > n, and P € Pr F},,, such that

m m - A
(ZZU) (HAP_H‘> + <1E _HAP+i> ~n P in Un ( SF >p+m .
i=1 i=1

=
By Lemma 8.3.4 and Lemma 8.2.4 ¢),

m m m
Ig — HAp+i =z <1E - HAp+i> + (HAp+i> ~p
i=1 =1 =1

m m
~p (]E —HAP.H) +Zl (HAP_H') in Un Ep+m
i=1 i=1

so by Proposition 7.1.3 and Proposition 8.1.4,

m
)[Ph 1E*HAp+i
0 i=1

(ZIU) (l’_nIApH‘) + <1E ﬁAP+i>] —
i=1 i=1 .
- l(lE ﬁAp+i> +7 (ﬁAeri)
i=1 i=1 |
((ZIU) (ﬁApH) + <1E _ﬁAeri)) X
i=1 i=1

|

S
I

Q
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Step 2 Injectivity
Let a € Ko(F) with Bra = 0. By Proposition 6.1.5 d), there are P,Q € Pr F,, PQ =0,
~ ~ o~ ~ =~
such that @ = [P]o — [Q]o. Then [P]; = [Q]1, so U := PQ* € ung, SF . Then
U=(z=1D)P+1g)((z—-1)Q+1g)) = (z-1)P+(EZ—-1)Q+1g, U(l)=1g.

By Proposition 7.1.3, there is an m € IN such that

" " ; A=~
Vi=U|[]Ani |+ | 1le—[]Ansi | = thimalU €Ung,,,, | SF |nim.
i=1

i=1

A~
Then thereisaW € Un E,,, withV ~, W in Un ( SF >,,+m. By the above,

' =~
W:W(l)NhV(l):lE, VNh lE in Un (SF),H,,”.

By Proposition 7.1.3,

m m
P <HAn+i> + <1E - HAn+i> = T,imeP = (waLmAnU)(TrI;rm,nQ) =
i=1

i=1

F B o m m A~
= V(Tn+m7nQ) ~n Q0 HAn+i + | 1g— HA,1+,' in Un | SF |u+m,
i=1

i=1

so by Proposition 8.3.5 b),

m m X ;-/v\
~p QO Apgi |+ 1g— HAn+i in Un | SF |ntm-
i=1 i=1

m m
P =P (HAn+i> + <1E - HAn+i> )
i=1 i=1

Put
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Q=0 (HAn+i> + <1E HAn+i> .
i=1 i=1

By Proposition 8.3.6 b), there are m’, p’ € IN such that

!

m' m
P <HAP/+1> + <IE — HAP/Jri) ~h
=1 '

J=1

3

J

m !
~n Q/ (HA[,/_H) + <1E - Ap’+i> in Pr Fpr+m/ .
Jj=1

I
-

It follows successively

ﬂ’l/

m/
P/'I—IIAP/+/ - Q/HlAp’#] ’
j=

J= do L 0
)]l ) 30
i=1 Jj=1 Jo L =1 j=1 0
[Plo = [Qlo, a=[Plo—[Qlo=0. [ ]

Remark. By Theorem 8.3.7 and Proposition 8.1.5 ¢), the functor Ky is determined by
the functor Kj.

COROLLARY 8.3.8 (The six-term sequence) Let
¢ v
0—F—G—H—0

be an exact sequence in Mg .

a) The sequence
N Sy
0—SF —SG—SH —0

is exact. Let
6, : K1 (SH) — Ko(SF)

be its associated index map (Corollary 7.2.3) and put (Proposition 8.1.5, Theorem
7.3.2)

& = GF_loézoﬁyzKo(H)—>K1(F).
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We call & and &, the six-term index maps. If we denote by & the corresponding

six-term index map associated to the exact sequence in Mg (with obvious notation)

0—sF-%crYsFr o0

then & = Br.
b) The six-term sequence

Ko(F) Ko(G) ™), Ko(H)

dl l

Kl(H) — Kl(G) — Kl(F)
Ki(y) Ki(9)

Ko(9)

&

is exact.

¢) If F (resp. H) is K-null (e.g. homotopic to {0}) then K;(G) pily Ki(H) (resp.
Ki(F) IM K;(G)) is a group isomorphism for every i € {0,1}.

d) If G is K-null (e.g. homotopic to {0}) then

Ko(H) 25 Ky (F), Ki(H) 25 Ko(F)

are group isomorphisms.

e) If ¢ is K-null (e.g. factorizes through null) then the sequences

Z

0 — Ko(G) Y Ko(#) 2 Ky (F) — 0,

=

0 — K1(G) "% g, (1) 2 Ko(F) — 0

are exact.

f) If yis K-null (e.g. factorizes through null) then the sequences

0— Ko(H) -2 k1 (F) 9 k1(G) — 0,

0 — Ki(H) 5 ko(F) 5% ko (G) — 0

are exact.

g) The six-term index maps of a split exact sequence are equal to 0.
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a) is easy to see.

b) By Theorem 8.3.7, By is an isomorphism. By Theorem 7.2.9, the sequences

)= )

Ki(F) ™ K (G) ™ Ky (1) 25 ko(F) 2% ko(G) ™ ko (H),

Ky (Sy

Ki(SG) Y K\ (SH) -2 Ko(SF) Y Ky (5G)

are exact. By Proposition 8.1.5 c¢) and Proposition 7.3.8, the diagrams

Ko(G) =Y Ky(H) Ki(F) 2% K (6)

ﬁGJ{ lﬁﬁ QFJ( lec

Ki(SG) —— Ki(SH) Ko(SF) —— Ko(SG)
K1 (Sy) Ko(So)

are commutative. It follows
8o Ko (W) = 6" 080 BuoKo(¥) =6 080K (Sy)ofs =0,

ImKy (y) C Ker&. Let a € Ker 8. Then & Bra = 0pdpa = 0, so there is a b € K; (SG)
with K (Sy) b = Bya. It follows

a=Py'Ki (Sy)b=Ko(y)B;'beImKo(y),  Kerd CImKo(y).

c) The assertion follows immediately from b). By Proposition 7.1.8 e), a
null-homotopic E-C*-algebrais K-null.

d) The proof is similar to the proof of c).
e) and f) follow from b) and Proposition 7.1.8 f).

g) By Proposition 6.2.9 and Corollary 7.3.9 (with the notation of b)) Ky (¢) and K; (@)

are injective and Ky (y) and K () are surjective and the assertion follows from b). W

COROLLARY 8.3.9 Let us consider the following commutative diagram in Mg

0 F—2s6 Y. H 0
AN s
0 Fl— G —— H 0,
® v
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where the horizontal lines are exact.

a) (Commutativity of the six-term index maps) The diagrams (with obvious

notation)
S
Ki(H) —2— Ko(F) Ko(H) —2— K(F)
W)l Ko(1) w)l lklm
Ki(H) — Ko(F") Ko(H') —— K\(F')
8] %

are commutative. If K;(F) = K; (F'), K;(H) = K; (H'), and K; (B) and K; (y) are
the identity maps for all i € {0,1} then & = &/ for all i € {0,1}.

b) The diagram (with obvious notation)

Ko(F) Ko(F) =20 ko) 2 ko (h) Ko(H)
- Ko(7) Ko(a)l Ko(B) -
K() ) KO(Y) KO(F/) KO((P,) K (G/) O(W,) K (H/) Ko(ﬁ) K()(H)

is commutative.

a) The commutativity of the first diagram was proved in Proposition 7.2.4. By
Proposition 7.3.8, the diagram

Ki(F) 7 k()

| Jon

KO(SF) Em— Ko(SF/)
Ko(S7)
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is commutative. By Proposition 7.2.4, the diagram

Ki(SH) —2 Ko(SF)

Ki(5p) | | ®ots)

Ki(SH') —— Ko(SF")
&

is commutative, where & and &) are defined in Corollary 8.3.8 a). By Proposition 8.1.5

¢), the diagram

Ko(H) 0 k()

bu | | B

Ki(SH) —— K;(SH')
K (SB)

is commutative. It follows, by the definition of & (Corollary 8.3.8 a)),
Ki(y)o8 =Ki(7)06; ' 080 By =6, 0 Ko(Sy) 0 0 By =

= 0. 08,0 Ki(SB) o B = 0,,' 0850 By o Ko(B) = & o Ko(B) -

b) follows from a) and Corollary 8.3.8 b). |
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Variation of the Parameters

Throughout this chapter we endow {0, 1} with the structure of o group by identifying
it with Z,.






9.1 Changing E

9.1 Changing £

Let E' be a commutative unital C*-algebra, ¢ : E — E’ a unital C*-homomorphism,
and
fiTXT—UnE', (s,t)— ¢f(s,t).

Then f € #(T,E’) and we may define E], with respect to f’ for every n € IN like in
Definition 5.0.2.

Letn € IN and put

=Y (9Cu) idk)Vi (€ EL).

teTy,

Forevery s € T,_1,

Y (f(s7',0)Cp 1) @idx)V/ =VIC, =

teTy,

=GV = Y ((flts71,5)C, 1) @ idi )V

teTy,

so by [2] Theorem 2.1.9 a),
f(s_ltvt)cn,s"l = f(ts_15s)cn,ls"
for every t € T,,. It follows

Fs7nC = fis™s)C. vi‘c,=cvl', ¢ e(E. )"

n,s—'t nts—1

Thus (C))nen satisfies the conditions of Axiom 5.0.3 and we may construct a K-theory
with respect to T, E’, f’, and (C},),eN, which we shall denote by K'.

Let F be an E’-C*-algebra. We denote by F or by ®(F) the E-C*-algebra obtained by
endowing the C*-algebra F' with the exterior multiplication

ExXF—F, (o,x)— (po)x.
IfF-%Gisa morphism in M/, then F 2. Gisa morphism in Mg , in a natural way.
Let F be an E’-C*-algebra and n € IN. We put for every

X = Z (((X,,x[) ®ldK)‘/lf E ﬁn,
teTy
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X' = Y (9o,x) 2idg)V/ (€ F)
teTy

and set
Orn Fp—F,, X+—X .

Then ¢r, is a unital C*-homomorphism (surjective or injective if ¢ is so ([2] Theorem
2.1.9 a))) such that ¢F7n(UnE,l IV7“,1) C UnE’/I F, and PFp 0 O'f = O',f o ¢r . Thus we get for
every i € {0,1} an associated group homomorphism ®; r : K;(F) — K/ (F).

Let E” be a unital commutative C*-algebra, ¢’ : E’ — E” a unital C*-homomorphism,
and ¢” := ¢’ o ¢. Then we may do similar constructions for ¢’ and ¢” as we have done
for ¢. If F is an E”-C*-algebra, ®'(F) and ®"(F) the corresponding E’-C*-algebra and
E-C*-algebra, respectively, then ®”(F) = ®(®'(F)). If @} and P/ are the equivalents of
®; with respect to ¢’ and ¢, respectively, then @/ = @ . 0 ®; g () for every i € {0,1}.
If E” = E and ¢” = idg then C] = C, for every n € IN and for every E-C*-algebra F,
@' (F) = F and @ = idy,r) for every i € {0,1}. If in addition ¢"" := ¢ 0 ¢’ = ids then
C)' =C], for every n € IN and for every E’-C*-algebra F, ®'(®(F)) = F and (ID;,d)(F) o
D F = idK{(F) for every i € {0,1}, i.e. the K-theory and the K’-theory “coincide”.

Remark. Let P € PrE,0 < P < 1g, and put
Pf:TxT —UnPE, (s,t)— Pf(s,t).

Then Pf € % (T,PE) and we denote by PK the K-theory with respect to 7, PE, Pf, and
(PCp)nen- Then for every E-C*-algebra F and i € {0,1}

Ki(F) ~ ((PK)i(PF)) x (1 = P)K)i((1g — P)F)) .
If F -5 G is a morphism in 91 then
P¢:PF — PG, Px—s Pox
is a morphism in Mpg and
Ki(¢) = (PK)i(P@) x ((1g — P)K)i((1g — P)@)

for every i € {0,1}.

PROPOSITION 9.1.1 We use the above notation and assume i € {0,1}.
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a) If F 2 Gisa morphism in Mg then the diagram

K(F) X2 Kk(G)

q%:Fl l‘biﬁc

K/(F) —— K/(G)
Ki(¢)

is commutative.

b) For every E'-C*-algebra F the diagram

is commutative, where [}, denotes the Bott map in the K'-theory.
c) If
0—F-%G65H—0

is an exact sequence in Mg then the diagram

Ki(A) =2 Ko(F)

tbl.Hl l‘bO,F

Ki(H) —— Ky(F)
1

is commutative, where 6{ denotes the index maps associated to the above exact

sequences in the K'-theory.

a) For every n € IN and

X= Z ((ataxt)@)idK)th c }VT“,“

teTy

Pu0raX = Y (000, 9x) @idi )V = $G.05,X .

teTy,

b) Foreveryn € IN and P € Prlf",,,

e

¢senP = (P) = P = OrnP .
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c)LetneIN and U € Un Iv?n_l. By Proposition 7.2.1 a), there are V € Un én and
PePr IV7“,, such that

v v

W,V =AU +BU", $,P=VAV* .

Then
V061V = O W,V =As(0n—1U) + By (¢ n—1U)*,

(Z)n(PF,nP: ¢G,n(7)nP: (¢G7HV)A;(¢G.nv)*

so by Corollary 7.2.3,
8P y[UN = 81[0n n—1U]1 = [@p.nPlo = Po.r[Plo = Do réi U]
51/0CD1_’H=‘1>07FO51 . .
LEMMA 9.1.2 Let F,G be C*-algebras, ¢ : F — G a surjective C*-homomorphism,
and
v € (0,1),F) — % (0,11,G), x> gox.
a) Y is surjective.
b) Assume F unital and let v € Un € ([0,1],G) such that there is an x € Un F with
@x =v(0). Then there isau € Un € ([0, 1],F) with yu =v and u(0) = x.
a) Let y be an element of € ([0, 1], G) which is piecewise linear, i.e. there is a family
O=s51<s$9< - <sp_1 <8, =1
such that for every i € IN,_; and 7 € [0, 1],
(I =1)si+1sip1) = (1= 1)y(si) +1y(sit1) -

Since ¢ is surjective, there is a family (x;);en, in F with @x; = y(s;) for every i € IN;,.
Define x : [0,1] — F by putting

x((1=1)si+tsi41) := (1 —1)x; + 12141
forevery i € IN,_; and ¢ € [0,1]. Fori € IN,_; and ¢ € [0, 1],

(yx)(L—=1)si+tsiv1) = @((L —1)xi +txi11) =
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= (1 =2)y(si) +1y(siv1) = y(1 = 1)si +15i41) ,

so yx =y, y € Imy. Since the set of elements of % ([0, 1], G), which are piecewise linear,

is dense in % ([0, 1],G) and Im y is closed (as C*-homomorphism), ¥ is surjective.

b) Let
w:[0,1] — UnG, s——v(0)*v(s).

Thenw € Un % ([0,1],G) and w(0) = 1. Put
w1 [0,1] — UnG, s+ w(st)
for every ¢ € [0,1]. Then
[0,1] — Un%([0,1],G), tr—w
is a continuous path with wy = w and wo = l¢([,1],)- Thus
weUng%([0,1],G) .

By a), v is surjective, so by [4] Lemma 2.1.7 (i), there is a ' € Un ¢ ([0,1],F) with
yu' = w. Put
u:[0,1] — UnF, s—xu'(0)*d(s) .

Thenu € Un € ([0,1],F), u(0) = x, and

(wu)(s) = @(u(s)) = @(xud' (0)"u'(5)) = @ (x) ((wu')(0))" ((yu')(s)) =

for every s € [0, 1], i.e. yu=v. [

THEOREM 9.1.3 ®; ¢ is a group isomorphism for every i € {0,1} and for every E'-C*-
algebra F.

By Proposition 9.1.1 b), @ r = (B) ! 0@ s o B, so it suffices to prove the assertion
for @ r only. Letn € IN and U € Un Fy,. Put V :=U(cF'U)* ~1 U. Since 6}V = 151, V
has the form

V= Z (o4, xr) ®idK)th/

teTy
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with o4 = 611 and x; € F for every ¢ € T,,. If we put

W= Z ((8141E,x)® idK)Vlf

teTy,

then ¢r,W =V and we get @, p[W]; = [V]; = [U]1, so Py F is surjective. Thus we have
to prove the injectivity of ®;  only.

Let a € Ker @1 r. We have to prove a = 0. There are n € IN and

U:=Y (o, x)@idg)V/ e UnF,
t€T,

with a = [U];, where (04,x;) € F for every t € T,,. Since [U']; = @, (U] =0, by
Proposition 7.1.3, there is an m € IN such that

Ué = (HA:l-H) U’+ <1E’ _HA;l-‘ri)
i=1 i=1

is homotopic in Un Fy1y to a U] € Un E},,,, (C Un Fy1,,). Thus there is a continuous

path
U':[0,1] —UnFyp, s—U.

A
Case 1 ¢ is injective

Put
W) = U0, (U Ug) (€ Un Fyim)

for every s € [0,1]. Then

m N m
Grf+mW; = Grﬁ»mU(; = ¢F,n+m ((HAn-H) (Grll:U) + <1E _HAn+i>>
i=1 i=
for every s € [0, 1]. If we put

W =Y ((Bsssyss) @idg)Vi"

t ETn+m

where (By,,ys:) € F forall s € [0,1] and t € T,,, then

Z ((ﬁs,ho) ®idK)th = O-rf-&-mWs/ =

IETrH—m
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)

and so by [2] Theorem 2.1.9 a), there is a (unique) family (% );cr,,,, in E with B, = ¢ for

—

1

= OFnim <<ﬁA"+i> Y (o, 0) @id )V + (15 -
i1

=
every s € [0,1] and 7 € T4, Since ¢ is injective, ¢4, is also injective and ¢n+m(F ntm)
may be identified with a unital C*-subalgebra of F;, ,,. Thus

W01 — UnFoim, s Y ((%oys) @idg)Vy

t €Tn+m

is a continuous path in Un F ntm With @F Wy = W/ for every s € [0, 1]. It follows

m m
¢F,n+mW0 = W({ = U(/) = ¢F.,n+m (( An+i> U+ <1E - HAnH)) )
i=1 i=1

OFnmWi = Wl/ = Ul/ Grllirm(Ul/* U(l)) = GrermU(/) € ¢F.,n+m(Un Er/ler) :

Since ¢ is injective, @ ;4. 1S also injective and we get

<HAn+i> U+ <1E —HAn+i> =W,
i=1 i=1

i=1 i=1

<HAn+i> U+ <1E —HAn+i> €Ung,,, Frim, g=[U=0.

Case 2 ¢ is surjective

We put

Uy := ( mlA,,H) U+ (1,; - ﬁAW) (€EUNFpym) -
i= i—
Since ¢ is surjective, @r 4, is also surjective ([2] Theorem 2.1.9 a)). Since
OrnmUo = U
it follows from Lemma 9.1.2 b), that there is a continuous path

[0,1] —)Unﬁn+m, s +— Uy

with ¢ ,+mUs = U] for every s € [0,1] and Uy = Up . Since ¢p iUy =U| €UnE, ..
we have U € UnEHmI::ner and g = [U]; = [Up]; =0.
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Case 3 ¢ is arbitrary

There are a unital commutative C*-algebra E” and a unital C*-homomor-phisms ¢’ :
E — E" and ¢" : E” — E’ such that ¢’ is surjective, ¢” is injective, and ¢ = ¢” o ¢’
and the assertion follows from the first two cases and the considerations from the begin
of the section. [

COROLLARY 9.14 Let E',E" be unital commutative C*-algebras such that E = E' X
E" and

0 E—E', (Xx")—X,

¢// E—E", (x/’x//) NN

If F' is an E'-C*-algebra and F" is an E"-C*-algebra then the map (with obvious

notation)
Ki(@'(F)) x @"(F")) — K{(F') x K (F"),  ar— (P} pr x /) (9ya)
is a group isomorphism for every i € {0, 1}, where
¢ Ki(®'(F') x @"(F")) — Ki(@/(F')) x K;(®"(F"))
is the canonical group isomorphism (Product Theorem (Corollary 6.2.10 b), Proposition

7.3.3 b)). [

COROLLARY 9.1.5 If f(s,t) € T for all s,t € T and C, € T, for all n € Wand if K©
denotes the K-theory with respect to T, T, f, and (Cy)ne then Ki(E) = KF (¢ (Q,T))
Soralli € {0,1}, where Q denotes the spectrum of E. |

PROPOSITION 9.1.6 If F is an E'-C*-algebra then the map

v

©:EX®(F) —)&;ZF\), (0, x) — (a,x— o)

is an E-C*-isomorphism.

For (a,x),(B,y) € Ex®(F)and Y€ E,
o(v(a,x)) = o(ya, (@y)x) = (o, (97)x — ¢(yar)) =
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=(10)(a,x—9a)=(7,0)p(a,x),
o(a,x)" = @(a’,x") = (a",x" —ga”) = (p(at,x))",
¢(a,x)p(B,y) = (ot,x—9a)(B,y—9B) =
= (o, (¢a)y—¢(af)+ (¢f)x—o(aP)+xy—(¢f)x— (pa)y+d(af)) =

= (aﬁ,xy_ (b(aﬁ)) = (p(aﬁ,xy) = (p((a,x)([i,y)),

so ¢ is an E-C*-homomorphism. The other assertions are easy to see. |

9.2 Changing f

In all Propositions and Corollaries of this section we use the notation and assumptions
of Example 5.0.4 and F denotes a C*-algebra.

LEMMA 9.2.1 For every n € IN there is an €, > 0 such that for every m € IN, m < n,

and a € UnT, |a— 1| < &, there is a unique o € UnT, |Be — 1| < L, with B2 = a;

moreover the map o, — P is continuous.

If B, are distinct elements of Un C and ™ = y" then
2mi

B-rz[l—em|>—>
and the assertion follows from the continuity of the corresponding branch of the map
o . |

DEFINITION 9.2.2 For every finite group S we endow F (S,T) with the metric

ds(g,h) := sup{ [g(s,1) —h(s,0)| | 5,0 €S}

forall g,h € F(S,C).

Remark. .7 (S,T) endowed with the above metric is compact.
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DEFINITION 9.2.3 We put
AT,E):={A:T—UnE|A(1)=1g}

and
OA:TXT —UnE, (s,t)—> A(s)A(t)A(st)"

forevery A € A(T,E).
LEMMA 9.2.4 Let S be a finite group and Q a compact space.

a) {84 | A € A(S,C)} is an open set of F (S,T).
b) For every € > 0 there is an € > 0 such that for all g.h € F(S,¢ (Q,0)), if
llg(s,1) —h(s,2)|| <&

forall s,t € S then there is a . € A(S,T) such that h = g8\ and |A(s) — 1| < € for
alls € S.

c) Letg e F(S,% (Q,C)) and ¢ : |0,1] x Q — Q a continuous map. We put for every
uel0,1],
Gui=0(u,): Q—Q,

GuiSXS—UNT, (5,1)— g(5,) 0,
Then g, € F(S,% (Q,T)) for every u € [0,1] and there is a A € A(S,TC) with g| =

g06)L.
a) By [3] Theorem 2.3.2 (iii),

{7 geF(S0)} /=y

is finite. { A | A € A(S,C)} is obviously a closed subgroup of . (S,T). By the above
and [2] Proposition 2.2.2 ¢), % (S,C) is the union of a finite family of closed pairwise
disjoint sets homeomorphic to { A | L € A(S,C) },so { A | A € A(S,T) } is open.

b) By a), there is an € > 0 such that for all g’,n’ € .#(S,T) with dg(g’,h") < € there is
ad e A(S,C) with i = g’6A. We may assume that

(14&)“S — 1 < ecaras
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where €c,,q4s Was defined in Lemma 9.2.1.

We put for every o € Q
0:SXS—UnC, (s,0)— (g(s,1))(@),

he:SxS—UnC, (s,t)— (h(s,1))(w).

Let @ € Q. By the above, there is a A, € A(S,C) with g4 = hyOAy. Lets € S and let
n € IN be the least natural number with s* = 1g. By [2] Proposition 3.4.1 ¢),

n—1

Ao(s)" = H(gw(sj,s)*hm(sj,s)) .

=l

For every j € IN,_,

HIE —g(s%s)*h(sﬂs)H = Hg(sj,s) —h(sﬂs)“ <e,

n—1
g —[T(s(s7,5) h(s’5))

j=1
By Lemma 9.2.1, there is a unique y € Un C with

[T(s(s",s

Jj=1

Tt = (1= g7, h )| < (1407,
j=1

< (1 +8)n_1 — 1 <eécans -

n—1 X X 1
= i s)*h(s! —1 .
/y'l ]I:]l(g(s 7S) (S ’s))7 |y ‘ < CardS
For @ € Q, since |1 — Ay (s)| < €caras, we get Ag(s) = ¥(s). So if we put
A(s): Q—T, o 7y(s)

we have A € A(S,C) and g = h6A. By Lemma 9.2.1, we may choose € in such a way that
the inequality |A(s) — 1| < € holds for all s € S.

¢) By b), there is a family (4;);en, in A(S,TC) and
O=ug<up < - <up_1<u,=1
J
such that g,, = g, ,04; for every i € IN,. By induction go6 <H l,) = gu; for every
i=1 :

n
j € IN,,. Thus if we put A := [] A; then go8A = g; |
i=1
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Remark. Let A € A(T,E) and f' = f6A (€ .#(T,E)). For every full E-C*-algebra F
and n € IN we denote by F the equivalent of F,, constructed with respect to f” instead of
f (Definition 5.0.2). By [2] Proposition 2.2.2 a; = ay, there is for every n € IN a unique
E-C*-isomorphism ¢! : F,, — F! such that for all m,n € IN, m < n, the diagram

(PF
F, —— F),

Lo

F, —— F]
or
is commutative, where the vertical arrows are the canonical inclusions. We put C, :=
©EC, for evrey n € IN. (C}),eN satisfies the conditions of Axiom 5.0.3 with respect to
S, so we can construct a K-theory with respect to T, E, f’, and (C}),eN, which we shall
denote by K/'. If m,n € IN, m < n, then the diagrams

pnm T”’:’n
Fyn —— UnF, —— UnkF,
“”f’l l""f soril l%F
F, —— F, UnF! —— UnF!
pnm 11'

n,m

are commutative and so we get the isomorphisms
PrF, — PrF’, un F. — un'F, .
By these considerations it can be followed that K and K/ " coincide.
DEFINITION 9.2.5 Let Q be the spectrum of E, I' a closed set of Q, and F a

C*-algebra. We denote by € (E;I',F) the E-C*-algebra obtained by endowing the
C*-algebra € (U, F) with the structure of an E-C*-algebra by putting

ox:I'—F, o— a(o)x(o)
Jorall (a,x) € EXE (L,F). If Q' is an open set of Q then the ideal and E-C*-subalgebra
{xe € (E;QF)| x|(Q\Q)=0}

of € (E; Q,F) will be denoted ¢, (E; Q' ,F).
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By Tietze’s theorem
0— % (E;Q,F) 2 ¢ (E;QF) 5 ¢ (E;Q\Q ,F) —0
is an exact sequence in 21z, where ¢ denotes the inclusion map and
Vv C(E;QF) — € (E;Q\Q F), x—x|(Q\Q).
PROPOSITION 9.2.6 We denote by Q the spectrum of E, by I a closed set of Q, and by
B :[0,1] x Q@ — Q a continuous map such that
0eQ=—%0,0)=0, 3(1,0) el

and ¥(s,0) = forall s € [0,1] and ® €T. We put E' .= ¢ (I',C), E" :=E, U5 := 9 (s,")
Sforevery s €0,1], and

0:E—E, x——xl, 0 :E —E'"=E, xX+—xo¥,
fiTXT —UnE', (s,t)— ¢f(s,t) = f(s,1)|T,
f1iTxT —UnE", (s,t)— ' f'(s,t) = f(s,t) 00 .
a) Thereisa A € A(T,E) such that " = f6A and the K-theories associated to f and

f" coincide (as formulated in the above Remark). If T is a one-point set (i.e. Q is
contractible) then f"(s,t) € UnT (CUnE) forall s,t €T.

b) If we put
y:€(E;QF)— %€ (E;T,F), x—x|[

then K;(6o (E; Q\T',F)) = {0} and
Ki(y) : Ki(6 (E;Q,F)) — Ki(¢ (E;T',F))
is a group isomorphism for every i € {0,1}.
c¢) IfT" is a compact subspace of Q\T then
Ki(¢ (E; Q\ (FUIY),F)) = K11 (€ (E;T',F))

forallie{0,1}.
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d) Let T be a closed set of Q, ¢ : 6o (E; Q\ (TUT),F) — € (E; Q,F) the inclusion
map,
V6 (E;QF)— ¢ (E;TULF), x—x|(TUD),

and &y, 8, the corresponding maps from the six-term sequence associated to the

exact sequence in Mg

0— % (E;Q\ (TUT),F) -5 ¢ (E; Q,F) %5 % (E;TUT,F) — 0
then the sequence
. Ki(y) . = S
0 — Ki(¢ (E; Q,F)) =% Ki(¢ (E;TUL,F)) —

5 Kis1(% (E; @\ (TUT), F)) — 0

is exact for every i € {0,1}.

a) By Lemma 9.2.4 ¢), for every m € IN there is a A, € A(Sy,, E) with f”|(Sy X Si) =
gm0 An. We put
A:T—UnE, t+——2,() if t€S,.
Then
f(s,0) = TT (8m6A) (smytm) = (fEA)(s,1)

melN
foralls,t € T,ie. f' = fS6A.

—_—
b)Letn €IN and X € (%0 (E"; Q\F,F)) . Then X has the form

n

X =Y ((a,x)®idg)Vi"

teTy

where o € E"” and x, € 6y (E"; Q\T',F) for all t € T,,. We put
X = Z ((al 0¥, x0 ‘09) ®idK)sz
teTy

for every s € [0,1]. Then

v

———
[0,1]—><‘€0(E”;Q\F,F)> , s X

n
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is a continuous map, Xo = X,

Xi =Y (o 0%1,0) @idg )V,

teT

and

/_/v— /_/v%
(%(E”:Q\F,F)) —><‘€0(E”;Q\F,F)> , X— X,

n

is an E”-C*-homomorphism for every s € [0, 1]. Thus Kif”(%o (E"; Q\T,F)) ={0}. By
a), Ki(6o (E: Q\T',F)) = {0}.

If ¢ : 6 (E;Q\T,f) — € (E;Q,F) denotes the inclusion map then
0 — % (E; Q\T,F) > ¢ (E; Q,F) -5 ¢ (E;T,F) — 0

is an exact sequence in 9Mgand the assertion follows from the six-term sequence
(Corollary 8.3.8 ¢)).

c) If we put
F =% (E;Q\(CUT"),F), F:=%/(E;Q\IF), F:=%¢(ETIF),

o —FE, x—zx,
v:B—F, x—x|l
then
0—F-5Fh -5 F—0

is an exact sequence in Mg and the assertion follows from b) and from the six-term

sequence (Corollary 8.3.8 d)).

d) @ factorizes through % (E; Q\ T, f) so by b), K;(¢) = 0 and the assertion follows
from the six-term sequence Corollary 8.3.8 b). |

COROLLARY 9.2.7 We use the notation of Proposition 9.2.6. Let Q be a compact
space and O : Q — Q a continuous map such that the induced maps Q\ (TUT’) —
Q\9(TUl"), T — 3(T), and I — O(I") are homeomorphisms. If we put E := € (Q,T)
and

0:E—E, x——xo0d
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and take an f € F (T,E) such that f(s,t) = ¢ f(s,t) for all s,t € T and a corresponding
(Co)ne € T1 E, then with the notation from the beginning of section 9.1 (with E and E
nelN

interchanged)
K (0 (E: @\ 3(TUT'), F)) ~ Ky (€ (E; D), F))

foralli € {0,1}, where K denotes the K-theory associated to T, E, f, and (Cy)nen. If in
addition T has the same property as T then

R (¢ (B: D(D).F)) ~ K (¢ (E: 5(I"),F)) .

By our hypotheses,
® (% (E; Q\(TUI),F)) =6 (E: @\ S(TUl'),F) ,
O(¢ (E:T,F)~% (E;9(),F), @®(¢(E:T,F))~%(E:0I)F),
so by Proposition 9.2.6 b) and Theorem 9.1.3,
Ki (6o (E: Q\O(TUT"),F)) = K; (¢ (E: Q\ (TUI'),F)) ~

~Kip1 (¢ (E;T,F)) = Kiy1 (€ (E; D), F)) .

If the supplementary hypothesis is fulfilled then by Proposition 9.2.6 ¢) and Theorem
9.1.3,

COROLLARY 9.2.8 Assume E =% (I,T).
a) If 01, 65, 05, 04 € R such that 0) < 6, < 01 +21, 03 < 04 < 03+ 27 then
Ki<f€<E;{el’9 ‘ 6, <0< 92},F)) ~

k(o5 (| oz0<ar)

forevery i€ {0,1}.
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b) Let 0,6, € IR, 6 < 6, < 0y + 21 and let I be a closed set of
T\{eie ’ 6 <0< 91+27r}
such that ¢ € T and ¢! ¢ T if €% £ €%, Then
Ki(%o (E;T\I,F)) = K;11(€ (E; T,F))
for every i € {0,1}. Moreover

K1 (€ (E; {1},F)T  if  Fis finite

K@ (EM\LF)~ Ny k. (4(E:{1},F)) if F is infinite
nelN

c) If 'y, Iy are closed sets of T, not equal toM and such that their cardinal numbers
are equal if they are finite then
Ki(€ (E;T1,F)) = K;(€ (E; T2, F))

forallie {0,1}.

a) We may assume 0; < 63 < 0; +27. Put Q' :=[6;,sup (61,65)], E' := € (Q/,C),
B:Q —T, a— e,
0:E—E, x——xo00.

Since it is possible to find an f’ € Z(T,E’) and a (C),),ew € [ E, with the desired
nelN
properties, we get

K; (% (E; { e ( 0 <0< 92},F)) ~K; (Cg (E; {ei93},F)) .

by Corollary 9.2.7. Thus

Ki(%(E;{e"" ‘ 63§6§64},F)> ,(%(E (ei®]), F))
)

K,-(%(E-{ ’9)el<9<92},F)
zKi(%(E'{ ’9‘93<9<94},F>)

b) If we put Q' := [0y, 6, +27x], E' := € (Q,0),

B:Q —T, a— %,
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¢ E—E', x—x00,

then the first assertion follows from Corollary 9.2.7. If T" is finite then the last assertion

follows now from a) (and Corollary 6.2.10 b) and Proposition 7.3.1 b)).

Assume now I infinite. Then Qg :=T\T is the union of a countable set of open
intervals. Let Z be the set of finite such intervals ordered by inclusion and for every
O € E let Qg be the union of the intervals of ® and ' :=T\ Q. By the above,

Ki(%o(E;T\To,F)) ~ Ki1(€ (E; {1},F))°

for every ® € E. We get an inductive system of E-modules with 6, (E;T\I,F) as
inductive limit. By Theorem 6.2.12 and Theorem 7.3.6, K;(%p (E;T\TI,F)) is the
inductive limit of K;(%p(E;T\I'e,F)) for ® running through E, which proves the

assertion.
c¢) follows from b). [ |

Remark. Let & and O; be the group homomorphisms from the six-term sequence

associated to the exact sequence in g
0— %6 (E;I\I',F) — ¢ (E;T,F) — % (E;T,F) —0.
Then & and &; do not coincide with the group isomorphism
Ki(%o (E;T\T,F)) =~ K;11(¢ (E; [,F))

from Corollary 9.2.8 b).

COROLLARY 9.2.9 IfQ is a compact space such that E = € (Q xT,T) then
Ki(6o (E: Qx (M\{1}),F)) = Kiy1 (¢ (E; Q x {1}, F))
foreveryie{0,1}. [ |
COROLLARY 9.2.10 If the spectrum of E is 1B, for some n € IN then
Ki(% (E: 1B, \ {0}, F)) = {0} and
Ki(%o(E; { ¢ e R" | 0 < [|ex|| <1}, F)) ~ Ki11 (€ (E; Sp1, F))

Sorevery i € {0,1}. [ |
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COROLLARY 9.2.11 Let (kj)jc; be a finite family in IN, Q' the topological sum of the
family of balls (IBkj) jes, and Q the compact space obtained from Q' by identifying the
centers of theses balls. If ® denotes the point of Q obtained by this identification and S
denotes the union of (Sk;—1) jes in Qand if E = ¢ (Q,C) then

Ki (6o (E: Q\{0},F)) ={0},
Ki(6o (E; (Q\ ({0} US),F)) = K1 (¢ (E: S,F))
Soreveryie{0,1}.
If we denote by ¥ : Q' — Q the quotient map, by I' the subset of Q' formed by

the centers of the balls (IBy,)jes, and by I the union of (Sg;-1)je; (I" C Q') then the
assertions follow from Proposition 9.2.6 b), ¢) and Corollary 9.2.7. [

LEMMA 9.2.12 Let S be a finite group, g € % (S,E), and Q the spectrum of E.
a) If there is an wy € Q and a family (0(s,t))s:es of selfadjoint elements of E such
that
6(r,5)+0(rs,t) = 0(r,5) +0(s,1),  g(s,1) =€) (g(s,1)(an))

Sfor all r,s,t € S then there is a A € A(S,C) with (g6A)(s,t) = g(s,t)(wy) for all
s,t €S.

b) If Q is totally disconnected then there is a A € A(S,E) such that

((g2)(s,1))(Q)

is finite for all s,t € S.

a) For every u € [0,1] put
gu:SXS—UnE, (s,1)—s e (g(s,1)(ap)) -

Then
[071] —>ﬁ\(S,E), Ur—r8u
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is a continuous map with g; = g and go(s,7) = g(s,7) (@) for all s,¢ € S. By Lemma 9.2.4
a),b), there are

O=uy<u <--<wup_1<u=1

and a family (4;) jew, in A(S,C) such that g, | = g.;64; for every j € INk. We prove by
induction that

k
8wy = gH 61/
=l

J
for all I € INg. This is obvious for / = k. Assume the identity holds for / € INy, / > 1.
Then

k k
g H 52’] = (gnal]> 62’1—1 = gul,laz'l—l = gul,za
j=I-1 =i

which finishes the proof by induction. If we put

k
A:=]]A € A(S.D)
j=1

then by the above

k
g6A =g[[64 =20
=1

J

b) Let ay € Q. Since Q is totally disconnected and S is finite, by continuity, there is a
clopen neighborhood Qg of @y and a family (6(s,#))sses in ReG (Qo,C) such that

0(r,5)+0(rs,1) = O(r,st) +0(s,1),  g(s,1)[Q0 = ) (g(s,1)(ay))
for all r,s,¢ € S. By a), there is a A € A(S,C) with
((¢1€20)84)(s,1) = g(s,1)(an)
for all s,t € S.

The assertion follows now from the fact that there is a finite partition (Q;) jc; of Q with

clopen sets such that ; possesses the property of the above € for every j € J. [ |

PROPOSITION 9.2.13 If the spectrum of E is totally disconnected then there is a A €
A(T,E) such that ((fOA)(s,t))(Q) is finite for all s,t € T.
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9.2 Changing f

By Lemma 9.2.12 b), for every m € IN there is a A4, € A(S,,E) such that
((gmOAm)(s,1))(Q) is finite for all s,7 € S,,. If we put

A:T—UnE, tr—2A,() if t€S,

then A has the desired properties. [

PROPOSITION 9.2.14 Assume that T, f, and (C,)ne Satisfy the conditions of
Example 5.0.4 and of its Remark 1 and that the spectrum Q of E is simply connected.

a) Thereisa A € A(T,E) such that (fOA)(s,t) €C foralls,;t € T.

b) IfK; (¢ (Q,C)) = {0} for the classical K, then K| (E) = {0} for the present theory.

a) follows from Lemma 9.2.12 a).

b) follows from a), Remark 1 of Example 5.0.4, and Proposition 7.1.10. [ |
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