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Preface 

Researchers, academics and students are engaged in one form of research or 

the other that requires designing. However be it as it may, most of these 

individuals are not conversant with selecting the appropriate experimental 

designs that should best suit their respective researches or studies. To some 

understanding the concepts and basis of these designs are quite a challenge. Still 

others have a huge challenge handling these designs because of the complex 

mathematics underpinning these designs. 

In addition there is no one stop book that treats in details the various designs 

and the mathematical principles underlying them. One might advance the 

argument that computer applications aid analyzing of these designs but the same 

cannot be said of these designing and selecting the appropriate designs for 

individuals in the conduct researches. 

This book covers thoroughly the explanations of the concepts and basic terms 

in almost all the known experimental designs; the mathematics underlying these; 

how to select the appropriate designs for a study and a logical sequence of 

analyzing these designs. For each of these designs, hypothetical examples of 

experiments have been provided with stepwise approaches towards analyzing 

them. It treats complex designs in a simplified way to enhance the understanding 

of its readership. The designs are arranged in a systematic order of increasing 

complexity. 

Albeit the underlying principles of experimental designs and analysis are based 

on mathematic, the other aspect of designs, which is the actualization or 

practising is equally challenging. Oftentimes when it comes to mounting of an 

experiment using a particular design, people understand the mathematical basis, 

however identifying and allocating the different treatments or levels or factors of 

treatments to each plot or experimental units (as to whether they are 
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homogeneous or heterogeneous) become a dilemma to them. This book does not 

only deal with the mathematics behind each design but also how to identify the 

treatments; levels of treatments; whether a plot or a unit is homogenous or 

heterogeneous; and explains and demonstrate with practical examples on how to 

identify and allocate factor in the design as main factors or sub factors based when 

applicable. 

Each chapter dwells extensively and exhaustively on a particular design with 

hypothetical data analysed and interpretations to aid the readers understanding of 

the design. 

This is thus a must read book for all involved in designing of experiments in 

diverse fields. 
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Concepts and Basis of Experimental 

Design 

Felix Kutsanedzie1 *; Sylvester Achio1;  

Edmund Ameko1; Victoria Ofori2; Paul Goddey1 

1Accra Polytechnic, GP 561, Accra, Ghana 
2Agricultural Engineering Department, KNUST, Ghana 

Abstract 

The concepts and basic terms underlying experimental designs are not well 

understood by students and some researchers. For experimental designs to be 

understood, the various terms used and applied in designing an experiment must be 

well explained. Some of the terms used and applied in the field of experimental 

designs are quite wrongly used and applied by students and many others involved in 

research. This paper defines and explains the terms comprehensively. 

Keywords 

Experimental Design, Treatment, Bias, Randomization, Experiment, Variance, 

Variable 
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1.1  Introduction 

There is variability in all living and non-living things that exist in nature. 

Even though things may be categorized or classified into a particular group, 

there still could exist variability between things placed in the same group. 

Variations exist more in living things than in non-living things because of their 

characteristics – growth, reproduction, excretion, irritability, movement, 

respiration. The variability in living organisms may be linked to special 

functions they play. Some plants have narrower leaves than others; others have 

their leaves reduced to spine as a way of conserving water loss through 

respiration and transpiration. Some human beings are ambidextrous, thus they 

are able to do so many things at a goal. It is very important as a matter of fact 

when researching on things to be able to ascertain and quantify the variability 

between them. In order to do this, there is a need for one to design experiments 

to prove statistically how variables differ or relate to each other. 

Oftentimes people complain of the mathematical principles on which the 

concept rests as it is tedious working such calculations manually. In the advent 

of computers, computations have been made quite easy but the underlying 

principles need to be understood before using computers to do the various 

calculations. It will also explain and define the terms used in the design of 

experiments as well as the types of design and when they are supposed to be 

used in experiment. 

1.2  Terms Used in Experimental Designs  

There are so many terms one to know and understand in the designing of 

experiment. When these terms are not properly understood and used by the 



Chapter 1  Concepts and Basis of Experimental Design 

 

http://www.sciencepublishinggroup.com 5 

designer, it would lead to confusion and wrong results being churned out at the 

end. Some of the terms are explained below. 

1.3  Experimental Design 

It refers to the allocation of treatments to experimental units or materials or 

plots. Normally when an experiment is to be mounted, it must first be designed. 

Thus experimental design encapsulates how an experiment must be conducted, 

and how data collected is to be collected, analysed and interpreted. It therefore 

suggests that every experiment (not survey) must have its unique and 

appropriate design. 

1.4  Experiment 

It is an investigation where an investigator imposes treatment(s) on 

experimental units to ascertain the effects on the unit by the measurement of 

response variables on the unit due to the imposition. 

When one wants to conduct an experiment, the individual considers what to 

perform the experiment on (experiment unit or material) and what to use on the 

experiment unit to be able to study their effects on the unit (treatment) and the 

measurements to take from the units (response variable) in order to arrive at 

conclusion. However, a researcher can have a test and a controlled experiment. 

1.5  Test Experiment 

In a test experiment, all conditions or treatment are made available except the 

treatment the researcher is interested in investigating for effects on the 

experimental material. For instance, if the researcher wants to know the effects 
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of nitrogen on a plant growth, he / she provides all the conditions for plant 

growth with the exception of nitrogen. When all other need conditions all 

provided, whatever effects or defects that are observed are considered to be due 

to the condition lacked in the experiment. 

1.6  Control Experiment 

It is an experiment in which all treatments or conditions are necessary for the 

experimental material to allow the needed response variables to be observed and 

measured. This is the converse of the test experiment. The researcher would 

therefore compare the results from a test and a control experiment to do 

interpretation for a conclusion to be made. 

1.7  Observatory Study 

It is also an investigation in which no treatment is imposed on an 

experimental unit by the investigator but he or she observes and measures 

response variables on the unit. 

1.8  Treatments 

It is the set of conditions or circumstances created for an experiment or 

investigation. For instance an investigator might want to study the effect of 

acids on a particular experimental unit or material. The treatment one can then 

impose on the experimental unit to create and acid condition could be the 

introduction of an acid. Hence the acid becomes the treatment in this case. 
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1.9  Factor 

It is an explanatory variable to be studied in an experiment and can be set at 

different values. 

Once the treatment has been selected as acid, the experimenter might be 

interested in looking at more than one form or type of an acid. Each form or 

type of an acid thus becomes a factor in the experiment. 

1.10  Level 

The level of a factor refers to the different values of factors under considera-

tion or to be studied. For example in the case of a treatment (acid condition), 

factors such as sulphuric acid, carbonic acid, hydrogen sulphide can all be 

considered as factors because they are all different kinds of acids. Now, the 

concentrations or the quantities of these acids used in creating the acidic 

conditions referred to as the levels of the factors 

1.11  Replication 

It refers to the number of times a complete set of treatment is repeated in an 

experiment. When a researcher applies the same treatment to the same 

experimental unit or materials, provided the conditions are the same, the 

response variables would yield the same measurement (the results should be the 

same). To ensure consistency in results, a researcher repeats the same 

treatments over the experimental units in order to minimize errors and biases 

which are likely to be overlooked when repetition or cross checking is not done. 
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1.12  Experimental Unit 

It is physical entity or subject on which the treatment is applied independent 

of other units. In other words, it is what generates the response variable that the 

investigator needs to measure and observe to address the objective of the 

experiment. It should be noted that an experiment can have homogeneous or 

heterogeneous experimental units and thus might give different response 

variables. It is therefore important for the research to know if his or her units are 

homogeneous or not in order to apply the appropriate design. 

1.13  A Plot 

It is an example of experimental units - a smallest unit of land that a treatment 

is applied to. The conditions or compositions of a piece of land differ in 

chemically, physically and biologically. If an experiment needs to be conducted 

on a piece of land, these chemical, physical and biological are likely to affect the 

results. Thus a plot is just a small piece of land, where the variations in its 

chemical, physical and biological properties are expected to lesser. 

1.14  A Block 

It is a large area or experimental unit consisting of several identical units on 

which all or most of the treatments under consideration are applied. Thus plots 

can be blocked – can be classified into blocks in an experiment. This allows the 

experimenter to compare variations in all the treatments when considering 

heterogeneous experimental units. 
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1.15  Response Variable 

A characteristic of an experimental unit observed or measured after a 

treatment has been applied to it. In other words, it is the reaction observable or 

measurable reactions generated by experimental units as a result of application 

or imposition of a treatment to/on it. These observations and measures are what 

the investigator analyzes to address the objectives of the experiment. 

1.16  Explanatory Variable 

It is the characteristics of a treatment (factor) that induces the experimental 

unit to generate a response variable. 

1.17  Experimental Error 

It is a measure of the differences between experimental units on which the 

same treatment is applied. It seeks to establish the variation or variances in the 

experimental units. These variations may stem from the units, the lack of 

uniformity in the way the investigator applied the treatment, uncontrolled external 

influences and others that cannot be explained (natural). For example, if the same 

treatment (seed of pepper) is applied on an experimental units (plots). 

1.18  Randomization 

It is the act of allocating treatments to plots in an experimental design such 

that each has equal chance of receiving each treatment – plots or experimental 

units are not favoured or discriminated against. Randomization reduces the 

incidence of biases in allocation of treatment. An experimenter can decide to 
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treat a particular unit differently due to personal beliefs or ideals thereby 

introducing errors. However, when treatments are randomized, this can never 

happen. Randomization can be done by using random numbers generated using 

the computer or random number tables. To give different ration of feed 

(treatments) to rats (experimental units), the quantity feeds can be written on a 

paper, folded, placed in a cup, mixed up, then picked randomly and them 

applied to the experimental units. 

1.19  Single-Factor Experiment 

It is an experiment in which the investigator varies only one factor while all 

the others are kept constant. For an experiment in which the treatment is an acid, 

the factors can be hydrochloric acid and sulphuric acid. The experimenter can 

choose to vary the concentration of one of the factors while maintaining the 

other. When this happens, the experiment becomes a single-factor experiment. 

1.20  Multi–Factorial Experiment 

It is an experiment in which all the factors involved in the experiment are 

varied unlike the single-factor experiment. 

1.21  Full Factorial Treatment Design 

In a full factorial treatment design, the treatments involve all possible 

combinations of the levels of the factors of interest. 
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1.22  Observational Unit 

An observational unit is a unit on which the response variable is observed and 

measured. This unit can either be the same as the experimental unit in some 

cases and in other cases not. For instance, if seeds are sown on different types of 

soil to ascertain the yields of plants in those soils, the soil is the experimental 

units but the fruits on the plant become observation units. 

1.23  Conducting an Experiment 

To conduct an experiment, one needs to consider the following: 

• Identify, define and state the problem 

One cannot investigate a problem without identifying it. The first and 

foremost thing to do is to identify and define the problem such that all could 

understand it as a problem that needs to be tackled and solved. The problem 

statement should be precise and concise. It should not be ambiguous. 

• State the objectives and develop a hypothesis of the study 

The objectives of conducting the experiment must be clearly stated. They 

are basically the reasons for conducting the experiment. The problem can 

be woven to develop a hypothesis – a statement which is neither 

considered as true or false but needs to be investigated and proven to 

otherwise. It is therefore the data collected from an experiment carried out 

that can provide evidence for or against the hypothesis. 

• Designing and conducting the experiment 
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Having identified, defined and stated the problem, the research needs to 

design appropriate experiment that would help him or her conduct relevant 

data to prove the hypothesis. The designing of the experiment therefore 

plays a crucial role in proving the hypothesis and hence achieving the 

stated objectives of the experiment. Research therefore needs to be well 

baked in experimental designs to be able to design good experiments. 

• Collecting data 

The execution of the experiment allows the researcher to collect data on 

the response variables from experimental units induced by explanatory 

variables from factors of the treatments being considered in the experiment 

or to observe and measure the response variables in the case of observatory 

studies. 
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Abstract 

Complete Randomized Design is one of the design analysis that is not well 

understood by researchers. However the need to understand such a design is very 

vital in the case where the experimental units being considered are homogeneous 

or uniform. This paper uses examples to explain the underlying principles and 

how the design is used for analysis. 

Keywords 

Randomization, Homogeneous, Treatment, Experimental Units, Factors, Levels, 

Replications 

2 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

18 http://www.sciencepublishinggroup.com 

2.1  Introduction 

Complete Randomized Design (CRD) is the simplest form of design used in 

experimental analysis. It involves randomization of treatments on homogeneous 

or uniform experimental units /plots uniform. Since in nature or reality, most 

experimental units are not homogeneous, it makes this design suited for large 

experiments vis-à-vis the homogeneity requirement of the experimental units. 

This presupposes that it is not suitable for the analysis of large field experiments. 

It is thus suited for small experiments. 

In allocation or assignment of treatments to experimental units, randomiza-

tion is used. Randomization involves the assigning of treatments to experiment 

units such that each treatment has equal chance of being assigned to units 

available. The randomization uses random tables and computer programmes to 

generate random numbers for the allocation of treatments to units. For instance, 

when one has five treatments – chloroquine (A), malarex (B), paracetamol (C), 

chamoquine (D) and panadol (E) are given to sterile rabbits(experimental units) 

to study their effects on them. Assuming that this experiment is to be replicated 

(repeated) five times, it means 5 (treatments) x 5 (replicates) totaling 25 

(experimental units) from which data will be collected. The table below 

indicates how the randomization is done: 

Table 2.1  Randomization of Five Treatments in a Complete Randomized Design (CRD). 

A B C D E 

B A D C D 

C D E A C 

D E B B A 

E C A E B 
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Each of the boxes in the tables represent an experimental unit or plots (sterile 

rabbits) on which the various treatments (the medicines) denoted in the boxes are 

to be subjected to. This means that the researcher can table twenty (25) pieces of 

papers and label them with the letters A to E in turns until the twenty (25) pieces 

of papers are exhausted. The labeled pieces of papers are then folded, dropped in 

a cup and, shuffled. The pieces of papers are then picked randomly one after the 

order to denote the various plots or experimental units that the picked treatments 

would be applied to i.e. from 1
st
 to the 25

th
 experimental units. When this 

procedure is followed religiously, treatments are said to be randomized on the 

experimental units. 

Once the experiment design is set, the treatment can then be allocated 

randomly to the experimental units according to the design. During this time 

onwards are the researcher is supposed to observe the observation units and to 

measure and determine responses of the experimental units to the treatments 

they have been subjected to. 

2.2  Analysis of Data Obtained from the CRD 

Assuming the treatments were subjected to the experiment units in order to 

determine their efficacies based on the time taken in days for a named symptom 

to be corrected, the researcher would have to observe the various treatments and 

record the time taken in days as summarized in the table below: 

Data collected on time (measured in days) taken for a named symptoms on 

experimental units for each the respective replicates of each treatment 

considered in the CRD. 
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Table 2.2  Results Collected on responses of treatment to experimental units in CRD. 

A = 3 B = 3 C = 3 D = 6 E = 3 

B = 4 A = 4 D = 3 C = 4 D = 4 

C = 5 D = 4 E = 2 A = 3 C = 4 

D = 6 E = 3 B = 4 B = 3 A = 5 

E = 3 C = 2 A = 5 E = 2 B = 3 

In analyzing CRD designs after that had been collected from an experiment 

that have been carried, the must approach the Analysis of Variance (ANOVA) 

in terms of the following classification: designs having treatments with equal 

replication; designs having treatments with unequal replications, designs having 

treatments with equal number of samples per experimental unit; designs having 

number of subsamples that are unequal. 

Design and Analysis of Variance (ANOVA) for treatments with equal number 

of replication 

For the researcher to subject the data recorded in the Table 2.2, it must be re-

summarized as below: 

No/Replications A B C D E 

1 3 3 3 6 3 

2 4 4 4 3 2 

3 3 4 5 4 3 

4 5 3 4 4 3 

5 5 3 2 6 2 

 

A = 3 B = 3 C = 3 D = 6 E = 3 

B = 4 A = 4 D = 3 C = 4 D = 4 

C = 5 D = 4 E = 2 A = 3 C = 4 

D = 6 E = 3 B = 4 B = 3 A = 5 

E = 3 C = 2 A = 5 E = 2 B = 3 
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The first step in the analysis is to put forth the hypothesis: 

Before analyzing the data, there is the need to put forward the following 

hypothesis 

Ho: µA = µB = µC = µD = µE 

HA: µA ≠ µB = µC = µD = µE 

Ho: All the means of the treatments are equal 

HA: At least one of the means of the treatments is different 

Ho=Null hypothesis, HA=Alternate hypothesis, μ= means of treatments 

No/Replications A B C D E 

1 3 3 3 6 3 

2 4 4 4 3 2 

3 3 4 5 4 3 

4 5 3 4 4 3 

5 5 3 2 6 2 

Tt = 20 17 18 23 13 

ƩTt = 91 
    

CF = (ƩTt)^2/(r x t) 3.64 
    

TSS = Ʃ((3)^2 + (3)^2 +...+ (2)^2) –CF 357.36 
    

TtSS = Ʃ((20)^2 +(17)^2 + (13)^2) /r) – CF 338.56 
    

ESS = TSS –TtSS 18.8 
    

TtA =   (3 + 4 + ⋯+ 5)  =  20 

TtB =   (3 + 4 + ⋯+ 3)  = 17 

TtC =   (3 + 4 + ⋯+ 2)  =  18 
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TtD =   (6 + 3 + ⋯+ 6)  =  23  

TtE =   (3 + 2 + ⋯+ 2)  =  13 

TtT =    TtA +  TtB + TtC + TtD + TtE = 91 

TtT=Total treatment, ESS=Error Sum of Squares, TSS= Total Sum of Squares, 

TtSS=Treatment Sum of Squares, CF= Correction Factor. 

The second step is calculating of the Correction Factor: 

CF =  
 (Tt

T
)2

(r x t)
= 331.24 

The third step is calculating of the Total Sum of Squares: 

TSS =   ((3)2 + (3)2 + (3)2 + (6)2 +  (3)2 + (4)2 … . . +(2)2) – CF = 357.36 

The fourth step is calculating of the Treatment Sum of Squares: 

TtSS =   
((20)2 + (17)2 + (18)2 + (23)2 + (13)2)

5
– CF = 338.56 

The fifth step is calculating of the Error Sum of Squares: 

ESS = TSS − TtSS =  357.36 − 338.56 = 18.8  

TtT=Treatment Total, TSS=Total Sum of Squares, TtSS=Treatment Sum of 

Squares, ESS=Error Sum of Squares, CF=Correction Factor, t=number of 

treatment, r = number of replication. 
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The sixth step is completing the ANOVA table: 

ANOVA TABLE 

Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment t-1 = 5 - 1 = 4 338.56 84.64 90.04255 2.87 

Error [((r x t)-1)-(t-1))] = 24 -4 = 20 18.8 0.94 
  

Total (r x t) -1 = (5 x 5) - 1 =24 357.36 
   

Fcrit (5%) @ df of 4,20 = 2.87 
    

Fcrit (1%) @ df of 4,20 = 4.43 
    

df=degree of freedom, SS=Sum of Squares, MS=Mean Square. 

The degree of freedom for the all items under the sources of variations is one 

minus the item: df of treatment is 5 – 1; df for the total number of observation is 

25-1; the df of freedom for the error is 24 - 4. 

The Mean Square (MS) is the ratio of the SS to df: Treatment MS is 

calculated as:  

Treatment Mean Square  MS =  
338.56

4
= 84.64 

Error Mean Square  MS =  
18.8

20
= 0.94 

The F calculated value is the ratio of Treatment Mean Square to the Error 

Mean Square: 

Fcal. =  
Treatment Mean Square

Error Mean Square
=  

84.64

0.94
= 90.04255 

The seventh step looking up the F-critical table to the F- critical values: 

In looking at the F-critical table for the critical value, the level of significance 

or level of confidence is used. If the level of significance used is 1%, then the 

level of confidence is 99%; if the level of significance is 5%, the level of 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

24 http://www.sciencepublishinggroup.com 

confidence is 95%. Normally the 1% and 5% levels of significances are used 

depending on the precision of the work being undertaken. 

Whether the 1% or 5% level of significance is used or not, the degree of 

freedom of the treatment variation is used against the degree of freedom of the 

error variation as (x, y), where the degree of freedom of the treatment is located 

horizontally (x-axis) against the degree of freedom of the error variation on the 

vertically (y-axis) and the intercept of these two gives the corresponding value 

for the F-critical or tabulated value. 

Thus using the F-critical value from 5% (0.05) level of significance table for 

instance, one has to locate the degree of freedom of the treatment i.e. 4 

horizontally on the 5% F- table, and the degree of freedom of the error i.e. 20 on 

the vertically. Where the two intercepts, the F- critical or tabulated value can be 

read as 2.87. When the same procedure is followed on the 1% F –table, at using 

the degree of freedom of the treatment as 4 against the degree of freedom of the 

error as 20, the F- critical or tabulated value of 4.43 is obtained. This is 

summarized as follows: 

Fcrit or tab. at 5%  0.05 = 2.87 

Fcrit or tab. at 1%  0.01 = 4.43 

The eighth step is making the decision or conclusion: 

The decision rule is summarized as follows: 

If F calculated at the level of significance or level of confidence and degrees of 

freedoms stated is greater or equal to (≥) the F critical or tabulated, the null 

hypothesis is rejected and therefore concluded that there is enough evidence from 

the data to support the rejection of the null hypothesis because the mean of the 

various treatments are significantly different. This is expressed mathematically as: 
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Fcal ≥ Fcrit. or tab.  5% at 4,20 

Fcal ≥ Fcrit. or tab.  1% at 4,20 

For instance in the case being considered: 

Fcal  90.04 ≥ 2.87, Fcrit. or tab.  5% at 4,20  

Fcal   90.04 ≥ 4.43, Fcrit. or tab.  1% at 4,20  

Therefore the means of the various treatments being considered are 

significantly different at both 5% (0.05) and 1% (0.01) 

However if the F calculated at the level of significance or level of confidence 

and degrees of freedoms stated is less than to (<) the F critical or tabulated. We 

fail to reject the null hypothesis and conclude that there is enough evidence 

supporting the fact that the means of the various treatments are not significantly 

different. This is expressed as follows: 

Fcal < 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% at 4,20  

Fcal < 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% at 4,20 

It should be noted whenever a level of significance is chosen; the p-value 

(probability value) is equal to the level of significance. Thus for 5%, it means 

the p-value = 0.05, at 1%, p-value = 0.01. This implies that when the F 

calculated ≥ F critical, it is concluded that means are significantly different; 

hence the p-value will be less than the level of significance chosen i.e. < 0.05 

and < 0.01 at 5% and 1% respectively. 
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Table 2.3  F critical table at 5% (0.05). Table 2.4  F critical table at 1% (0.01). 

  

The ninth step is calculating the Coefficient of Variation: 

%CV =  
S

X 
 X 100 

Error MS = S2 

S =   Error MS 

%CV =  
 Error MS

X 
 

%CV =  
 0.94

3.64
 x 100 = 26.64  

CV = 26.64% 

𝐶𝑉 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛,  𝑆 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝐸𝑟𝑟𝑜𝑟 𝑀𝑆 = 𝐸𝑟𝑟𝑜𝑟 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒,  𝑥 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  

The Coefficient of Variation is the ratio of the standard deviation to the mean 

of the treatments expressed in percentage. It is a measure of the consistency of 

the mean of the treatment or the variations in the mean of the treatment. It 
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implies that when the standard deviation increases the variations in the means of 

the treatment increases. The CV can also be taken as the measure of variations 

in the means of the treatments. Thus the lower the CV value, the more 

consistent or uniform the means of the treatment. 

Design and Analysis of Variance (ANOVA) for treatments with unequal 

number of replication 

No/Replications A B C D E 

1 3 3 3 6 3 

2 4 4 4 3 2 

3 3 4 5 4 3 

4  3  4 3 

5  3   2 

This analysis is done when dealing with unequal number of replications of 

the treatment. In cases like this, the same preambles are used but with variations 

in the various formulae used in the computation. So we proceed to follow the 

same steps used earlier. 

The first step in the analysis is to put forth the hypothesis: 

Before analyzing the data, there is the need to put forward the following 

hypothesis 

Ho: µ1 = µ2 = µ3 = µD = µE 

H1: µ1 ≠ µ2 = µ3 = µD = µE (At least one of the treatment means differ from the 

others). 
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The second step is calculating of the Correction Factor: 

No/Replications A B C D E 

1 3 3 3 6 3 

2 4 4 4 3 2 

3 3 4 5 4 3 

4  3  4 3 

5  3   2 

Tt 10 17 12 17 13 

∑Tt 69 

    CF = (ƩTt)^2/(r )) 238.05 

    TSS 16.95 

    TtSS 7.13 

    ESS 9.82 

    Tt mean 3.45 

    

CF =  
 (Tt

T
)2

r
 

CF =  
(69)2

20
= 238.05 

where 𝑟 =  𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶 + 𝑟𝐷 + 𝑟𝐸 , r= total number of observations for the 

treatments. 

The third step is calculating of the Total Sum of Squares: 

TSS =   ((3)2 + (3)2 + (3)2 + (6)2 +  (3)2 + (4)2 … . . +(2)2) – 238.05 = 16.95 

The fourth step is calculating of the Treatment Sum of Squares: 

TtSS =   (
(TtA )

2

rA

+  
(TtB )

2

rB

+
(TtC )

2

rC

+
(TtD )

2

rD

+
(TtE )

2

rE

)– CF 

TtSS =    
(10 )

2

3
+  

(17 )
2

5
+

(12)2

3
+

(17)2

4
+

(13)2

5
 –238.05 = 7.13  
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TtSS =   245.18 – 238.05 = 7.13  

The fifth step is calculating of the Error Sum of Squares: 

ESS = TSS − TtSS =  16.95 − 7.13 = 9.82  

The sixth step is completing the ANOVA table: 

 

ANOVA TABLE  

    Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment  t-1 = 5 - 1 = 4 7.13 1.78 2.72 3.06 

Error [((r -1)-(t-1))] = 19-4 = 15 9.82 0.65 

  Total r -1 = (20) - 1 =19 16.95 

   

The seventh step looking up the F-critical Table to the F-critical values: 

This follows the earlier procedures used in looking up the critical values from 

the F critical Table  

Fcrit. or tab.  5% at df of 4,15 = 3.06 

Fcrit. or tab.  1% at df of 4,15 = 4.89 

  

The eighth step is making the decision or conclusion: 

Fcal.  2.72 <  3.06 , Fcrit. or tab.  5% at df of 4,15 
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Fcal.  2.72 <  4.89 , Fcrit. or tab.  1% at df of 4,15 

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01) 

level of significance and conclude that the means are not significantly different 

based on the data available. 

The ninth step is calculating the Coefficient of Variation: 

%CV =  
 Error MS

X 
 

%CV =  
 0.65

3.45
 x 100 = 23.45 

CV = 23.45% 

Design and Analysis of Variance (ANOVA) with equal number of samples per 

experimental units with treatments of equal number of replication 

Consider an experimental design where three different concentrations (10M, 

20M and 30M) of acetone are applied to dissolve a Perspex material chopped 

into five different thicknesses and replicated four times alongside taking the 

records of the time for the dissolution of chopped to be realized in minutes. This 

is an example of CRD design that requires ANOVA with equal number of 

samples per experimental unit with treatments of equal number of replication. 

The table below represents the summary of this information: 

Conc. (M) 10M 20M 30M 

 Perspexʺ Perspexʺ Perspexʺ 

Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4 

1 4 5 6 4 5 6 7 8 9 4 5 5 

2 5 4 6 4 3 6 7 7 4 6 5 5 

3 6 7 7 5 6 6 7 5 5 5 4 7 

4 4 7 8 6 4 5 5 6 6 6 4 6 

5 7 8 9 4 5 6 7 4 7 7 8 9 
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The first step in the analysis is to put forth the hypothesis: 

Before analyzing the data, there is the need to put forward the following 

hypothesis 

Ho: µ1 = µ2 = µ3  

H1: µ1 ≠ µ2 = µ3 (At least one of the treatment means differ from the others) 

Conc. (M) 10M 20M 30M 

  Perspexʺ Perspexʺ Perspexʺ 

Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4 

1 4 5 6 4 5 6 7 8 9 4 5 5 

2 5 4 6 4 3 6 7 7 4 6 5 5 

3 6 7 7 5 6 6 7 5 5 5 4 7 

4 4 7 8 6 4 5 5 6 6 6 4 6 

5 7 8 9 4 5 6 7 4 7 7 8 9 

EU 26 31 36 23 23 29 33 30 31 28 26 32 

TtT 

 

116 

   

115 

   

117 

  CF 2018 

           Tt mean 5.8 

           TSS 123.6 

           TtSS 0.1 

           EUSS 34.8 

           EESS 34.7 

           SESS 88.8 

           

The second step is calculating of the Correction Factor: 

CF =  
 (Tt

T
)2

rts
 

CF =  
(348)2

 4  3 (5)
= 2018.40 
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r= number of replication, t=number of treatment, s=number of samples. 

The third step is calculating of the Total Sum of Squares: 

TSS =   ((4)2 + (5)2 + (6)2 + (4)2 +  (5)2 + (6)2 … . . +(9)2) – 2018.40 = 123.60 

The fourth step is calculating of the Treatment Sum of Squares: 

TtSS =   (
(Ttt1 )

2

rs
+ 

(Ttt2 )
2

rs
+

(Ttt3 )
2

rs
)– CF 

TtSS =    
(116 )

2

 4 (5)
+  

(115 )
2

 4 (5)
+

(117)2

 4 (5)
 – 2018.40  

TtSS =   2018.5 – 2018.4 = 0.1  

The fifth step is calculating the Sum of Squares among the Experimental 

Units: 

𝐸𝑈𝑆𝑆 =   (
(𝐸𝑈1 )

2

𝑠
+  

(𝐸𝑈2 )
2

𝑠
+

(𝐸𝑈3 )
2

𝑠
+ … . .

(𝐸𝑈12 )
2

𝑠
)– 𝐶𝐹 

𝐸𝑈𝑆𝑆 =   (
(26 )

2

5
+  

(23)2

5
+
 31 

5
)–  2018.40 

EUSS = 2053.2 − 2018.40 = 34.8 

The sixth step is calculating the Experimental Error Sum of Squares: 

Experimental Error SS(EESS) = EUSS − TtSS 

Experimental Error SS (EESS) = 34.8 − 0.1 = 34.70 

The seventh step is calculating the Sampling Error Sum of Squares: 

Sampling Error SS (SESS) = TSS − EUSS 

SamplingError SS(SESS) = 123.60 − 34.80 = 88.8 
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The eighth step is completing the ANOVA table: 

 
ANOVA TABLE 

    
Sources of 

Variations 
df SS MS Fcal Fcrit. 

Treatment t - 1 = 3 -1 = 2 0.1 0.05 0.013 4.26(5%) 

Experimental error (tr-1) - (t - 1) = (3x4 -1) -2 = 9 34.7 3.86 
 

8.02(1%) 

Sampling error (trs -1) - (tr - 1) = (3x4x5 -1) -9 = 50 88.8 
   

Total trs - 1 = 60 -1 =59 123.6 
   

The seventh step looking up the F-critical Table to the F-critical values: 

This follows the earlier procedures used in looking up the critical values from 

the F critical Table  

Fcrit. or tab.  5% at df of 2,9 = 4.26 

Fcrit. or tab.  1% at df of 2,9 = 8.02 

The eighth step is making the decision or conclusion: 

Fcal.  0.013 <  4.26 , Fcrit. or tab.  5% at df of 2,9 

Fcal.  0.013 <  8.02 , Fcrit. or tab.  1% at df of 2,9 

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01) 

level of significance and conclude that the means are not significantly different 

based on the data available. 

The ninth step is calculating the Coefficient of Variation: 

%CV =  
 Error MS

X 
 

%CV =  
 3.86

5.8
 x 100 

%CV =  
1.96

5.8
 x 100 = 33.87 
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CV = 33.87% 

Design and Analysis of Variance (ANOVA) with unequal number of 

subsamples 

Taking for instance a design similar to the previously treated one where this 

time around the number of subsamples are unequal as indicated in the table, the 

following approach is used in analyzing it.  

Conc. (M) 10M 20M 30M 

  Perspexʺ Perspexʺ Perspexʺ 

Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4 

1 4 5 6 4 5 6 7 8 9 4 5 5 

2 5 4 6 4 3 6 7 7 4 6 5 5 

3 6 3 7 5 6 7 7 5 5 4 4 7 

4     4 5 5 6 4 4 4 6 

5         6 5 8 5 

TEU 15 12 19 13 18 24 26 26 28 23 26 28 

TtT 

  

59 

  

94 

   

105 

  CF 1387 

           Tt mean 5.37 

           TSS 85 

           TtSS 7 

           EUSS 30 

           EESS 23 

           SESS 55 

           

The first step in the analysis is to put forth the hypothesis: 

Ho: µ1 = µ2 = µ3  

H1: µ1 ≠ µ2 = µ3 (At least one of the treatment means differ from the others) 
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The second step is calculating of the Correction Factor: 

CF =  
(sum of observations)2

number of observations
 

CF =  
(258)2

(48)
 

CF =  
66564

48
= 1387 

The third step is calculating of the Total Sum of Squares: 

TSS =   ((4)2 + (5)2 + (6)2 + (4)2 + (5)2 + (6)2 … . . +(5)2) – 1387 

TSS =  1472 − 1387 =  85 

The fourth step is calculating of the Treatment Sum of Squares: 

TtSS =   (
(Ttt1 )

2

rs
+ 

(Ttt2 )
2

rs
+

(Ttt3 )
2

rs
)– CF 

TtSS =    
(59 )

2

 4 (3)
+  

(94 )
2

 4 (4)
+

(105)2

 4 (5)
 – 1387  

TtSS =   1394 – 1387 = 7  

The fifth step is calculating the Sum of Squares among the Experimental Units: 

EUSS =   (
(EU1 )

2

s1

+ 
(EU2 )

2

s2

+
(EU3 )

2

s3

+  … . .
(EU12 )

2

si

)– CF 

EUSS =   (
(15 )

2

3
+ 

(18)2

4
+

(28 )
2

5
)–  1387 

EUSS = 1417 − 1387 = 30 

EUSS = Sum of Squares Among Experimental Units 

TEU = Total treatment on Experiemental Units 

The sixth step is calculating the Experimental Error Sum of Squares: 

Experimental Error SS(EESS) = EUSS − TtSS 
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Experimental Error SS  EESS = 30 − 7 = 23 

The seventh step is calculating the Sampling Error Sum of Squares: 

Sampling Error SS (SESS) = TSS − EUSS 

SamplingError SS SESS = 85 − 30 = 55 

ANOVA TABLE 

Sources of Variations df SS MS Fcal 
Fcrit. 

(5%) 

Fcrit 

(1%) 

Treatment t - 1 = 3 -1 = 2 7 3.5 1.3696 4.26 8.02 

Experimental error df(EU) -df(t) = (11-2) = 9 23 2.56 2.5556 
 

 

Sampling error df(T) - df(EU) = (47 - 11) = 36 55 
   

 

Total Total observ. – 1 = (48 -1)= 47 85 
   

 

df(EU)= degree of freedom of experimental unit. 

df(T)= degree of freedom of total observation. 

The seventh step looking up the F-critical Table to the F-critical values: 

This follows the earlier procedures used in looking up the critical values from 

the F critical Table  

Fcrit. or tab.  5% at df of 2,9 = 4.26 

Fcrit. or tab.  1% at df of 2,9 = 8.02 

The eighth step is making the decision or conclusion: 

Fcal.  1.37 <  4.26 , Fcrit. or tab.  5% at df of 2,9 

Fcal.  1.37 <  8.02 , Fcrit. or tab.  1% at df of 2,9 

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01) 

level of significance and conclude that the means are not significantly different 

based on the data available. 
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Abstract 

Complete Randomised Design (CRD) is used for experiments in which the 

experimental materials or units are homogeneous. However most experimental 

materials in life are heterogeneous in nature, hence the need to employ Complete 

Randomized Block Designs (CRBD) in designing and analysis of experiments with 

such nature. It is the most used of all the types of design, hence this chapter 

explains the underlying conditions and how it is used in analyzing experiments 

comprehensively for researchers and would-be experiment designers. 

Keywords 

Block, Homogeneous, Heterogeneous, Analysis, Randomized 

3 
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3.1  Introduction 

So long as researchers or individuals continue to design experiments to explain 

mechanisms, phenomenon etc. using heterogeneous experimental materials, the 

Complete Randomized Block Design (RCBD) would be required for analyses. 

Whereas Complete Randomized Design (CRD) is used appropriate for the 

analysis for experiments which involves the use of homogenous experimental 

materials, RCBD is used for experiments that require the use of heterogeneous 

materials. Generally when using animals as experimental materials in an 

experiment, when they are of the same species, they can be considered as 

homogeneous but when they are of different species then they are considered as 

heterogeneous. Assuming a researcher wants to use a plot of land to serve an 

experimental material for a study which involves the sowing of seeds to ascertain 

the germination rate, the plot of land needs to be divided into blocks, because it 

cannot be taken as a homogeneous unit due to the variability of nutrients at each 

point of the land. Thus the use of RCBD requires that when experimental 

materials which are not homogenous are to be used in an experiment, they must 

be divided into subgroups which are similar in nature and referred to as blocks or 

replicates before the design is employed for its analysis. The import of reducing 

the heterogeneous experimental materials to blocks or replicates is to make sure 

variations are minimized or reduced as much as possible so that all variations 

existing would be due to variability in the treatments applied. 

In RCBD, randomization of treatments is done such that every block is restricted 

to a single treatment. However it should be noted that based on randomization 

designs are partially classified as follows: homogeneity of experimental material – 

Complete Randomized Design (CRD); heterogeneity of experimental material – 

Randomized Complete Block Design, that is a single restriction of treatment; Latin 

Square Design (LSD) and Cross Over Designs, designs with two restrictions of 
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treatment; Graeco-Latin Square Design, design with more than two restriction of 

treatment allocation; Incomplete Block Design (IBD) includes those not grouped 

into replications and those grouped into replications. 

With RCBD, there is at least a single restriction of treatments per block, the 

treatment are randomly allocated at least once for each replicate or block. Also 

treatments are randomized separately for each block and have equal probability 

of being allocated to any experimental unit per block or replicate. 

3.2  Merits of RCBD over CRD 

There is preciseness of RCBD over CRD. 

The species or objects experimental materials generally thought to be 

homogeneous though it may not be necessarily as they may differ in one way or 

the other when carefully examined. This exposes the idea of homogeneity of 

material in the case of CRD as a flaw should differences exist between the 

experimental materials or units. However the RCBD reduces this flaw as it is 

intended to cater for the heterogeneity of experimental materials. As regard 

restriction of treatment, there is at least a single restriction, thus is every 

treatment is expected to be allocated at least once per block or replicate. 

3.3  Illustration of Randomized Complete Block Design 

Assuming a researcher wants to design an experiment to manage waste 

materials such coconut fruit waste (shell and fibre), palm nut shells, waste 

plastic bottles, waste plastic water sachets and waste plastic packaging bags 

through pyrolysis for the recovery of other usable products and by-products. A 

design of such nature is to ascertain whether the amount of products such as oil, 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

44 http://www.sciencepublishinggroup.com 

gas or char produced subjected to different treatments (different weights of the 

various materials used) on equal weight per weight basis are significant or not. 

The design below is an illustration RCBD. 

 Treatments (weights of the waste types) to be Pyrolysed 

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 

Coconut waste fruits  

(shell and fibre) [A] 
2.3 5.0 11.2 15.7 

Palm nut shell [B] 1.6 4.8 9.2 14.0 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 

Waste plastic bags [E] 4.1 8.5 11.9 16.9 

The table above is a design for five different treatments in terms of weights of 

the various waste types being considered in the study. The data being 

considered is the weights of the oil generated from these waste types. It should 

however be noted that the values fielded in the table are all being assumed for 

explanation and not real.  

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
2.3 5.0 11.2 15.7 34.2 

Palm nut shell [B] 1.6 4.8 9.2 14.0 29.2 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 11.9 16.9 41.4 

Treatment Totals 16.6 36.4 60 84.1 197.1 
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The first step: Stating of hypothesis 

For Blocks: 

Ho: All the means of the blocks are equal 

HA: At least one of the means of the blocks (blk) is different 

Ho: µblkA = µblkB = µblkC = µblkD = µblkE 

H1: µblkA ≠ µblkB = µblkC = µblkD = µblkE 

For Treatments: 

Ho: All the means of the treatments are equal 

HA: At least one of the means of the treatments (t) is different 

Ho: µtrtA = µtrtB = µtrtC = µtrtD = µtrtE 

H1: µtrtA ≠ µtrtB = µtrtC = µtrtD = µtrtE 

The second step: Calculating the Correction Factor (CF) 

CF =  
Y2

TB
 

where Y
2
=square of the sum of all observations 

where TB is the product of the number of treatments and number of blocks or 

number of replicates (r)when replicates are used rather instead of the blocks 

CF =
(2.3 + 5 + 11.2……… . +16.9)2

4 × 5
 

CF =
(197.1)2

4 × 5
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CF =
38848.41

20
 

CF = 1942.42  

The third step: calculating the Total Sum of Squares (TSS) 

TSS =   YIJ
2 −  CF 

TSS =   (2.32 + 5.02 + 11.22 ……+ 16.92) − 1942.42 

TSS =  2513.57 −  1942.42 = 571.15 

𝑌𝐼𝐽
2  is the square of all observations. 

The fourth step: calculating the Block Sum of Squares (BLKSS) 

BLKSS =   
BLKSS

nTrt

2

−  CF 

BLKSS =   
34.22 + 29.62 + 47.32 . . . +41.42

4
− 1942.42  

BLKSS =  
1169.64 + 876.16 + 2237.29 + ⋯+ 1713.96

5
−  1942.42 

BLKSS =  
7986.21

4
−  1942.42 

BLKSS = 1996.55 − 1942.42 

BLKSS = 54.13 

The fifth step: calculating the Treatment Sum of Squares (TRTSS) 

TRTSS =   
TRTSS

nBLK

2

−  CF 

TRTSS =   
16.62 + 36.42 + … . . +84.12

5
−  1942.42 

TRTSS =  
275.56 + 1324.96 + 3600………+ 7072.81

5
−  1942.42 
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TRTSS =  
12273.33

5
− 1942.42 

TRTSS =  2454.67 − 1942.42 

TRTSS =  512.25 

The sixth step: calculating the Error Sum of Squares (ERRSS) 

ERRSS =  TSS − (BLKS + TRTSS)  

ERRSS =  571.15 −  54.13 + 512.25  

ERRSS = 571.15 − 566.38  

ERRSS =  4.77 

Where nTrt =Number of Treatment, nBLK = Number of Blocks. 

The seventh step: completing the ANOVA Table  

 ANOVA TABLE     

Sources of Variation df SS MS Fcal. Fcrit. 

block blk - 1 = 5-1 = 4 54.13 13.53 33.83  

treatment trt - 1 = 4 -1 = 3 512.25 170.75 426.88  

error (blk-1)(trt -1) = 4 x 3 = 12 4.77 33.67   

total blk x trt - 1 = 20 -1 = 19 571.15    

For block: Fcrit (5%) @ df of 4, 12 = 3.26; Fcrit (1%) @ df of 4, 12 =5.41. 

For treatment: Fcrit (5%) @ df of 3, 12 =3.49; Fcrit (1%) @ df of 3, 12 = 5.95. 

The tenth step: looking up the F-critical table to find the F-critical values: 

For the block: 

𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,12 =3.26 

𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,12 =5.41 

For the treatment: 

𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 3,12 = 3.49 
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𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 3,12 = 5.95 

The eighth step: making the decision or conclusion: 

Decision on block: 

𝐹𝑐𝑎𝑙.  33.83 >  3.26 , 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,12 

𝐹𝑐𝑎𝑙.  33.83 >  5.41 , 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,12 

At both 5% and 1% levels of significance for the block, we reject the null 

hypotheses because the F-calculated values are greater than the F-critical values; 

thus we conclude that there is enough evidence provided by the data collected in 

the experiment to reject the null hypotheses. It thus implies that the blocks are 

significantly different, hence there was a need to block or in other words blocking 

can be justified. It means RCBD is the right design adopted for the study. 

Decision on treatment: 

𝐹𝑐𝑎𝑙.  426.88 >  5.95 , 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 3,12 

At 1%, since the F-calculated value is greater than the F-critical value, we 

reject the null hypothesis and conclude that the data collected provides enough 

evidence that the treatments are significantly different. 

𝐹𝑐𝑎𝑙.  426.88 >  3.49 , 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 3,12 

Again at 5% level of significance for the treatment, we reject the null 

hypothesis on the basis that the F-calculated value is greater than the F-critical 

value and thus conclude that the treatments are significantly different, therefore 

the need to find out the treatments that are significantly different. 
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3.3.1  Finding the Treatments that are Significantly Different 

Once the test reveals that there exist significance differences between the 

treatments, we proceed to find out which of the treatments significantly differ. 

This procedure of finding out is referred to as the pair comparisons.  

Since there are four treatments and we are to do a pair comparison, it 

presupposes that we will have 𝐶2
4 i.e. 4 combination 2 which means there would 

be 6 paired comparisons possible. These are as follow: 

AB, AC, AD, BC, BD and CD. There are two statistical methods used in 

doing the pair comparisons, these are namely: the Least Significance Difference 

Test (LSD) and the Duncan Multiple Range Test (DMRT). 

3.3.2  The Fisher’s LSD Test 

With regards to the LSD (Least Significant Difference) test, an LSD value is 

calculated at a prescribed level of significance either 5% or 1%, which serves as 

a boundary for the classification between whether one treatment is significantly 

or not significantly different from another when their means are compared. This 

means that if the means difference of any two treatments compared exceed the 

LSD computed at a prescribed significance level, then we conclude that the two 

treatments are significantly different or otherwise not. It is used or valid when 

used for independent (orthogonal) comparison and used when the treatment size 

is less i.e. less than six treatments. The generalized version of LSD is given by 

the formula: 

𝐿𝑆𝐷 =  
 𝑥𝑖 − 𝑥𝑗  

 𝑤𝑚𝑠  
1
𝑛𝑖

+
1
𝑛𝑗
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𝐻𝑜𝑤𝑒𝑣𝑒𝑟 𝑠𝑑 =    𝑊𝑀𝑆2  
1

𝑛𝑖
+  

1

𝑛𝑗
   

Since 𝑛𝑖 =  𝑛𝑗 , 

𝑠𝑑 =    𝑊𝑀𝑆2  
2

𝑛
   

𝑠𝑑 =   
2𝑊𝑀𝑆2

𝑛
 

where WMS =Within (Residual or unexplained)Mean Square, n=number of 

sample per each treatment or replication; sd=standard deviation. 

𝐿𝑆𝐷∝ =  𝑡∝ 𝑥 𝑠𝑑 

However, 𝑡∝
2
 is used to in order to a two sided hypothesis, therefore 

𝐿𝑆𝐷∝ =  𝑡∝
2

 𝑥 𝑠𝑑 

Taking the example being handled under the RCBD design for instance, we 

used the following data: 

 Treatments (weights of the waste types) to be Pyrolysed 

Blocks A B C D 

Coconut waste fruits (shell  

and fibre) 

2.3 5 11.2 15.7 

Palm nut shell 1.6 4.8 9.2 14 

Waste plastic bottles 4.4 9.2 14.4 19.3 

Waste plastic satchets 4.2 8.9 13.3 18.2 

Waste plastic bags 4.1 8.5 11.9 16.9 

Treatment Means 3.32 7.28 12 16.82 

LSD∝ =  t∝ x sd 
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sd =   
2WMS2

n
 

𝑊𝑀𝑆 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐴𝑁𝑂𝑉𝐴 𝑡𝑎𝑏𝑙𝑒 = 33.67; n = 4; Error or residual or 

unexplained df = 12 

𝑠𝑑 =   
2(33.67)2

5
 

𝑠𝑑 =   
2 𝑥 1133.89

5
 

𝑠𝑑 =   
2267.79

5
 

𝑠𝑑 =   453.56 

𝑠𝑑 =  21.30 

We therefore proceed to read the t-critical value from the two-tailed table at 

the significance level at which the design revealed that the treatments were 

significant (5% or 0.05). 

Therefore from the two tailed t-critical at 5% level of significance table we 

obtain: 

𝑡0.05
2

= 𝑡𝑜.𝑜25
, 𝑑𝑓 12 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑟 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 2.18 

𝑡 − 𝑐𝑟𝑖𝑡 𝑡𝑤𝑜 − 𝑡𝑎𝑖𝑙𝑒𝑑 𝑎𝑡 𝑑𝑓12 = 2.18 

𝐿𝑆𝐷∝ =  2.18 𝑥 21.30 

𝐿𝑆𝐷0.05 =  46.43 

The value t-crit (two-tailed) at df 12 can be read from the 𝑡0.05

2
= 𝑡𝑜.𝑜25

 critical 

table. 
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Means Difference Table 

 A(𝒙𝑨) B(𝒙
𝑩

) C(𝒙𝑪) D(𝒙𝑫) 

A (𝑥𝐴) -    

B (𝑥𝐵)  𝑥𝐵 − 𝑥𝐴  -   

C(𝑥𝐶)  𝑥𝐶 − 𝑥𝐴   𝑥𝐶 − 𝑥𝐵  -  

D(𝑥𝐷)  𝑥𝐷 − 𝑥𝐴   𝑥𝐷 − 𝑥𝐵   𝑥𝐷 − 𝑥𝐶  - 

 

 
Means difference table 

 

 
A (3.32) B (7.28) C(12.00) D(16.82) 

A (3.32) - 
   

B(7.28) 3.96 - 
  

C(12.00) 8.68 4.72 - 
 

D(16.82) 13.5 9.54 4.82 - 
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Since all the mean differences for all the treatments are (A, B, C, D) are less 

than (<) the LSD value obtained (45.39), hence the LSD test confirms they are 

not significantly different.  

 𝑥𝐵 − 𝑥𝐴 ,  𝑥𝐶 − 𝑥𝐴 ,  𝑥𝐷 − 𝑥𝐴 ,  𝑥𝐶 − 𝑥𝐵 ,  𝑥𝐷 − 𝑥𝐵 , 𝑥𝐷 − 𝑥𝐶 < 𝐿𝑆𝐷0.05 

The Duncan Multiple Range Test 

This test is also used for paired comparisons for a larger treatment size than 

the LSD. With the DMRT, the sample means of the treatments are ranked from 

the lowest to the highest and then the steps apart denoted by (r) is derived and 

used with the total degree of freedom (df) to read the q tabulated value from the 

studentized range table.  

When using the DMRT, two population means are significantly different if 

the absolute value of their sample differences exceed W, where W is defined as 

below: 

𝑊 = 𝑞  𝑟, 𝑑𝑓 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑟 𝑢𝑛𝑒𝑥𝑝𝑙𝑖𝑎𝑛𝑒𝑑  𝑥  
𝑊𝑀𝑆

𝑛
 

Where n=number of samples or observations per treatment group, r=the 

number of steps from the lowest treatment mean to the highest treatment mean 

when the treatment means are arranged in ascending order, df=degree of 

freedom of the residual or unexplained or error, WMS=within residual or 

unexplained or error mean square derived from the ANOVA table. 

Arrangement of the treatment means in ascending order to determine the 

steps is done as follows: 

𝑥𝐴 = 3.32 <  𝑥𝐵 = 7.28 <  𝑥𝐶 = 12.0 <  𝑥𝐷 = 16.82 

Since the distance between 𝑥𝐴  𝑎𝑛𝑑 𝑥𝐷  is 4, thus moving from 

𝑥𝐴  𝑡𝑜 𝑥𝐷  𝑖𝑠 4 𝑠𝑡𝑒𝑝𝑠 𝑡ℎ𝑒𝑛 𝑥𝐷  has r = 4, 𝑥𝑐  ℎ𝑎𝑠 𝑟 = 3, 𝑥𝐵  ℎ𝑎𝑠 𝑟 = 2 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

54 http://www.sciencepublishinggroup.com 

Therefore the table below can be constructed to aid the calculation of W: 

 𝒙𝑩 𝒙𝑪 𝒙𝑫 

𝒓 = 𝟐 𝒓 = 𝟑 𝒓 = 𝟒 

q(r, df of error = 12) 3.082 3.773 4.199 

𝑊 = 𝑞  𝑟, 𝑑𝑓 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 = 12  𝑥  
𝑊𝑀𝑆

𝑛
 3.082 𝑥  

33.67

5
 3.773 𝑥  

33.67

5
 4.199 𝑥  

33.67

5
 

W 7.98 9.77 10.88 

The values of q can be read from the critical values of the Studentized Range 

(0.05) presented. 
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We can now proceed to conclude based on the computation of the W-value 

and the mean difference: 

 Means difference table   

 A (3.32) B (7.28) C(12.00) D(16.82) 

A (3.32) -    

B(7.28) 3.96 -   

C(12.00) 8.68 4.72 -  

D(16.82) 13.5* 9.54 4.82 - 

 𝑥𝐵 − 𝑥𝐴 =3.96<7.98, there is no significant difference between A and B. 

 𝑥𝐶 − 𝑥𝐴 =8.68<9.77, there is no significant difference between C and A. 

 𝑥𝐶 − 𝑥𝐵 =4.72<9.77, there is no significant difference between C and B. 

  𝑥𝐷 − 𝑥𝐴 =13.5>10.88, there is significant difference between D and A. 

 𝑥𝐷 − 𝑥𝐵 = 9.54 < 10.88, there is no significant difference between D and B. 

 𝑥𝐷 − 𝑥𝐶 = 4.82 < 10.88, there is no significant difference between D and C. 

3.4  Missing Data Handling 

There is bound to be some data missing while conducting the experiment 

based on accidents such as breakage, death of an animal, spilling of a substance, 

destruction of a treatment on the experimental material by any extraneous 

subject or object (human or animal). When the experiment is started and these 

accidents occur, then the data on some experimental units cannot be obtained 

and thus referred to as „missing data‟. The experiment cannot be halted but 

continued and the missing data estimated after the experiment. In order to 

estimate the missing data the formula below can be used: 
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𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
  

where Yij=the missing data value, r=number of replicates or blocks, B=block or 

replicate total for block or replicate with the missing data, t=number of treatment, 

T=treatment total for treatment with missing data, 𝐺 =  𝑌𝑖𝑗
𝑛
𝑖𝑗 = grand total of 

experimental units or observation units. 

3.4.1  Handling a Single Missing Data 

Therefore using the same experiment presented for the RCBD design with 

one of the data taken out as a missing data in the table below, the missing data 

value is estimated as follows:  

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
2.3 5.0 11.2 15.7 34.2 

Palm nut shell [B] 1.6 4.8 9.2 14.0 29.2 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2  𝑌𝑖𝑗  13.3 18.2 35.7 

Waste plastic bags [E] 4.1 8.5 11.9 16.9 41.4 

Treatment Totals 16.6 27.5 60 84.1 188.2 

 𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑟 = 5, 𝑡 = 4, 𝐵 = 44.6, 𝑇 = 36.4, 𝐺 = 188.2 

𝑌𝑖𝑗 =
 5 ∗ 35.7 + 4 ∗ 27.5 − 188.2 

 5 − 1 (4 − 1)
 

𝑌𝑖𝑗 =
 178.5 + 110 − 188.2 

 4 (3)
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𝑌𝑖𝑗 =
288.5 − 188.2

12
 

𝑌𝑖𝑗 =
100.3

12
 

𝑌𝑖𝑗 = 8.4 

where r=number of replication, t=number of treatments, B=Block or replicate 

total with missing data, T=Treatment total with missing data, G= grand total of 

all observations. 

After the estimation of the missing data, the bias is computed using the 

formulae: 

𝛽1 =
[𝐵𝑂 − (𝑡 − 1)𝑥]2

𝑡(𝑡 − 1)
 

𝛽1 =
[35.7 − (4 − 1)8.4]2

4 4 − 1 
 

𝛽1 =
[35.7 − (3)8.4]2

4 3 
 

𝛽1 =
[35.7 − 25.2]2

12
 

𝛽1 =
[10.5]2

12
 

𝛽1 =
(110.25)

12
 

𝛽1 = 9.2 

Therefore the estimated bias (𝛽1) = 9.2 

Adjustment in the Analysis of using the bias: 

When the estimated bias has been computed, the adjustment of the analysis is 

done by subtracting the bias value from only the TSS (Total Sum of Squares) i.e. 
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[571.15 – 9.2 =561.95] and TrtSS (Treatment Sum of Squares) i.e.  

[512.25 – 9.2 = 503.05] 

Once the missing data value is estimated, it can be put in the table in order to 

complete the ANOVA table. It must however be noted that one df (degree of 

freedom) is lost from the error i.e. [((5-1)(4-1) – 1) = (12 -1) = 11] and also the 

total degrees of freedom because of one missing data. Therefore the ANOVA 

would look as below: 

 Complete Anova Table 

Sources of Variation df SS MS Fcal. Fcrit. 

Block blk - 1 = 5-1 = 4 54.13 13.53 31.21  

Treatment trt - 1 = 4 -1 = 3 503.05 167.68 386.69  

Error (blk-1)(trt -1) -1 =[ 4 x 3]-1 = 11 4.77 0.43   

Total blk x trt – 1-1 = 20 -1-1 = 18 561.95    

From the ANOVA table, the decisions to be taken on the blocks and 

treatments remains the same, after the missing data had been computed and the 

ANOVA table completed for the data.  
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3.4.2  Handling More than One Missing Data Under RCBD 

Assuming there are more than one missing data or values to be estimated under 

the RCBD, how this can be done is explained using the RCBD table below: 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
𝑌11  5.0 11.2 15.7 31.9 

Palm nut shell [B] 1.6 4.8 9.2 𝑌24  15.6 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 𝑌43  16.9 29.5 

Treatment Totals 14.3 36.4 48.1 70.1 168.9 

From the above table, it can be seen that three data values (𝑌11 ,  𝑌24  and 𝑌43) 

are conspicuously missing and which must be estimated in order to complete 

the table for the analysis of the data recorded.  

The first procedure adopted in estimating the values is to use the formula given 

below to find the average estimated values of the missing data in the design: 

𝑌𝑖𝑗 =  
(𝑇𝑚 + 𝐵𝑚 )

2
 

This formula can apply only to RCBD when estimating average missing data. 

Where Yij =estimated average missing data value, Tm =the mean value of 

treatment with the missing data, Bm =the mean value of treatment with the 

missing data. 

Thus applying this formula, one can obtain the estimated average values of 

the missing data: 𝑌11 ,  𝑌24  𝑎𝑛𝑑 𝑌43. 
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𝑌𝑖𝑗 =  
(𝑇𝑚 + 𝐵𝑚 )

2
 

𝐹𝑜𝑟 𝑌11 =  
(𝑇𝑚 + 𝐵𝑚 )

2
 

 𝑇𝑚 =
14.3

5
 = 2.86,  𝐵𝑚 =  

31.9

4
= 7.98  

𝑌11 =  
(2.86 + 7.98)

2
=  

10.84

2
= 5.42 

𝐹𝑜𝑟 𝑌24 =  
(𝑇𝑚 + 𝐵𝑚 )

2
 

𝑇𝑚 =
70.1

5
 = 14.02,  𝐵𝑚 =  

15

4
=  3.75 

𝑌24 =  
(14.02 + 3.75)

2
=  

17.77

2
= 8.89 

𝐹𝑜𝑟 𝑌43 =  
(𝑇𝑚 + 𝐵𝑚 )

2
 

𝑇𝑚 =
48.1

5
= 9.62, 𝐵𝑚 =  

29.5

4
= 7.38  

𝑌43 =  
 9.62 + 7.38 

2
=  

17.0

2
= 8.50 

Now that we have estimated the averages of missing data for 

𝑌11 ,  𝑌24  𝑎𝑛𝑑 𝑌43 , two of these estimated values can be substituted into the table 

for the formula given below to be used: 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

for computing the estimated values of each of the missing data in turns, and 

replacing the average estimated values with the new computed values until no 

change in the new computed values occur. When no change occurs in the 

estimated values, it means the accurate missing data values have been found. 

Using the stated procedures, we proceed to apply them. 
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Complete the table with the average estimated values (italicized in the table) 

leaving only the one whose estimated value one wants to determine first and in 

this case we start with 𝑌11 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 
10 kg [A] 20kg [B] 30kg [C] 40kg [D] 

Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
𝑌11  5.0 11.2 15.7 

31.9 

Palm nut shell [B] 1.6 4.8 9.2 8.89 24.49 

Waste plastic bottles 

[C] 
4.4 9.2 14.4 19.3 

47.3 

Waste plastic satchets 

[D] 
4.2 8.9 13.3 18.2 

44.6 

Waste plastic bags [E] 4.1 8.5 8.50 16.9 38.0 

Treatment Totals 14.3 36.4 56.6 78.99 186.29 

Compute for the estimated value of 𝑌11 using the formula given as: 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌11 =
 5(31.9) + 4(14.3) − 186.29 

 5 − 1 (4 − 1)
 

𝑌11 =
 (159.5 + 57.2) − 186.29 

 4 (3)
 

𝑌11 =
 216.70 − 186.29 

12
 

𝑌11 =
30.41

12
= 2.53 

Therefore substitute the value of 𝑌11 = 2.53 into the table and compute for 

the estimated value of the next missing data, 𝑌24. The new table is given below: 
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 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
2.53 5.0 11.2 15.7 34.43 

Palm nut shell [B] 1.6 4.8 9.2 𝑌24  15.6 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 8.50 16.9 38.0 

Treatment Totals 16.83 36.4 56.6 70.1 179.93 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌24 =
 5(15.6) + 4(70.1) − 179.93 

 5 − 1 (4 − 1)
 

𝑌24 =
 5(15.6) + 4(70.1) − 179.93 

 4 (3)
 

𝑌24 =
 (78 + 280.4) − 179.93 

12
 

𝑌24 =
 (358.4 − 179.93 

12
 

𝑌24 =
178.47

12
= 14.87 

The estimated missing data value for 𝑌24 = 14.87.  This value is then be 

substituted into the table for the subsequent estimation of the value for the 

missing data (𝑌43). 
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 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
2.53 5.0 11.2 15.7 34.43 

Palm nut shell [B] 1.6 4.8 9.2 14.9 30.47 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5  𝑌43 16.9 29.5 

Treatment Totals 16.83 36.4 48.1 84.97 186.3 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌43 =
 5(29.5) + 4(48.1) − 186.3 

 5 − 1 (4 − 1)
 

𝑌43 =
 (147.5 + 192.4) − 186.3 

 4 (3)
 

𝑌43 =
 339.9 − 186.3 

12
 

𝑌43 =
 339.9 − 186.3 

12
 

𝑌43 =
 153.6 

12
= 12.8 

The estimated value for the missing data 𝑌43 = 12.8.  This is therefore 

substituted in the table and the value of the first estimated value 𝑌11 taken out 

from the table and freshly computed for to ascertain whether the value will 

change or not. 
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 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
 𝑌11 5.0 11.2 15.7 31.9 

Palm nut shell [B] 1.6 4.8 9.2 14.9 30.47 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 12.8 16.9 42.3 

Treatment Totals 14.3 36.4 60.9 84.97 196.57 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌11 =
 5(31.9) + 4(14.3) − 196.57 

 5 − 1 (4 − 1)
 

𝑌11 =
 (159.5 + 57.2) − 196.57 

12
 

𝑌11 =
 216.70 − 196.57 

12
 

𝑌11 =
20.13

12
= 1.7 

Since 𝑌11  has changed from 2.53 to 1.7, it means one must continue 

computing until constant values are obtained. 

So we continue to compute for 𝑌24  by replacing the value of 𝑌11 = 1.7 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
1.7 5.0 11.2 15.7 33.6 

Palm nut shell [B] 1.6 4.8 9.2  𝑌24 15.6 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 12.8 16.9 42.3 

Treatment Totals 16.0 36.4 60.9 70.1 183.4 
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𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌24 =
 5(15.6) + 4(70.1) − 183.4 

 5 − 1 (4 − 1)
 

𝑌24 =
 (78 + 280.4) − 183.4 

 4 (3)
 

𝑌24 =
 358.4 − 183.4 

12
 

𝑌24 =
175

12
= 14.58 

The new value for 𝑌24 = 14.58, which has also changed from 14.9 to 14.58, 

so we substitute this value in the table: 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 
(shell and fibre) [A] 

1.7 5.0 11.2 15.7 33.6 

Palm nut shell [B] 1.6 4.8 9.2 14.58 30.18 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5  𝑌43 16.9 29.5 

Treatment Totals 16.0 36.4 48.1 84.68 185.18 

𝑌𝑖𝑗 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌43 =
 5(29.5) + 4(48.10) − 185.18 

 5 − 1 (4 − 1)
 

𝑌43 =
 (147.5 + 192.4) − 185.18 

 4 (3)
 

𝑌43 =
 339.9 − 185.18 

12
 

𝑌43 =
 154.72 

12
= 12.9 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

66 http://www.sciencepublishinggroup.com 

Therefore the missing data for 𝑌43 = 12.89, which is change from 12.8 to 

12.9 appropriately equal. 

We proceed to compute for the  𝑌11  by substituting the value of  𝑌43 = 12.9 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
 𝑌11 5.0 11.2 15.7 31.9 

Palm nut shell [B] 1.6 4.8 9.2 14.58 30.18 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 12.9 16.9 42.4 

Treatment Totals 14.3 36.4 61 84.68 196.38 

𝑌11 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌11 =
 5(31.9) + 4(14.3) − 196.38 

 5 − 1 (4 − 1)
 

𝑌11 =
 (159.5 + 57.2) − 196.38 

 4  3 
 

𝑌11 =
 216.7 − 196.38 

12
 

𝑌11 =
20.32

12
=  1.7 

Therefore 𝑌11 = 1.7, This value equals the previous hence suggest the right 

value for 𝑌11 = 1.7, we then check for 𝑌24 to see whether the estimated missing 

value remains the same as the previous value computed by substituting the 

value 𝑌11 = 1.7. 
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 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
1.7 5.0 11.2 15.7 33.6 

Palm nut shell [B] 1.6 4.8 9.2  𝑌24 15.6 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 12.9 16.9 42.4 

Treatment Totals 16 36.4 61 70.1 183.5 

𝑌24 =
 𝑟𝐵 + 𝑡𝑇 − 𝐺 

 𝑟 − 1 (𝑡 − 1)
 

𝑌24 =
 5 15.6 + 4 70.1 −  183.5 

 5 − 1 (4 − 1)
 

𝑌24 =
 5 15.6 + 4 70.1 −  183.5 

 4 (3)
 

𝑌24 =
 (78 + 280.4) −  183.5 

12
 

𝑌24 =
 (358.4 −  183.5 

12
 

𝑌24 =
 174.9 

12
 =  14.58 

Since the value of the missing data 𝑌24 = 14.58, same as the previous 

computed value for 𝑌24. It thus confirms that all the missing data values have 

been accurately estimated hence the table can now be completed and used for 

the Analysis of Variance (ANOVA).  
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Thus the completed table is shown below: 

 Treatments (weights of the waste types) to be Pyrolysed  

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] 
Block 

Totals 

Coconut waste fruits 

(shell and fibre) [A] 
1.7 5.0 11.2 15.7 33.6 

Palm nut shell [B] 1.6 4.8 9.2 14.58 15.6 

Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3 

Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6 

Waste plastic bags [E] 4.1 8.5 12.9 16.9 42.4 

Treatment Totals 16 36.4 61 70.1 183.5 
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Abstract 

The Latin Square Design (LSD) is one of the known experimental designs used 

in analysis designed experiments. Though this design exists, most researchers are 

unfamiliar with its usage. The prime aim of analysis experiment using the various 

known experimental designs is to reduce error as much as possible, or eliminate 

them altogether. This paper thus explain the concept of how the LSD is used for 

analysing experiment as well as how it helps to reduce errors due to the 

differences that exist in two directions (rows and columns) often referred to as 

double blocking. 

Keywords 

Design, Double Blocking, Experiment, Analysis 
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4.1  Introduction 

In an RCBD, blocking is used to place all treatments in groups that are 

similar or homogenous so as to reduce the error due to variations as much as 

possible among the various treatments being handled. In RCBD there is single 

blocking adopted – only treatments are blocked. However with the Latin Square 

Design (LSD) blocking is done – blocking by row and column. The LSD is set 

such that each treatment is found in both a row and a column. Thus the design 

typically assumes a square shape. The number of experimental units is denoted 

by n
2
, where n is the number of treatments or blocks or replications. It 

presupposes that in LSD, the number of blocks or replication used must be 

equal to the number of treatments being handled in order for each treatment to 

be found in the each block. 

If a researcher needs to analysis an experiment using the Latin Square Design, 

the treatments must be arranged in the rows and columns in such a way that the 

major sources come from them. 

Below are the types of LSD, and they are limited by the number of treatments. 

3 X 3 LSD 

A C B 

B A C 

C B A 

 

4X4 LSD 

A B C D 

B A D C 

C D A B 

D C B A 
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5X5 LSD 

A B C D E 

B A E C D 

C D A E B 

D E B A C 

E C D B A 

It can be seen from the designs above that the treatments are all arranged in 

such a way that each column and row contain all the treatments be experimented 

on. Thus the number and type of treatments in a row are equal to those in a 

column. 

Assuming a researcher wants to extract milk from five different plants such 

Tiger nut (T), coconut (Co), soyabean (So), cashew nut (Ca) and shea nut (Sh) 

to ascertain whether there are significance differences between the volume of 

milk in cubic centimetres that can be extracted from a kilogramme of each of 

the fruits; the following 5 x 5 Latin Square Design can be drawn: 

 5X5 LSD 

 Milk Extracted in cm3/kg of treatment 

 Column1 Column2 Column3 Column4 Column5 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 

Row2 Co = 5.5 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.9 

Row4 So = 4.2  Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 

Row5 Sh = 3.1 Ca = 4.8 So = 4.0 Co = 5.4 T = 5.6 

The first step: Stating of hypothesis 

For Treatments: 

Ho: All the means of the treatments are equal 
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HA: At least one of the means of the treatments (t) is different 

Ho: µtrtA = µtrtB = µtrtC = µtrtD = µtrtE 

H1: µtrtA ≠ µtrtB = µtrtC = µtrtD = µtrtE 

For Columns: 

Ho: All the means of the Columns (C) are equal 

HA: At least one of the means of the Columns (C) is different 

H0: µC1 = µC2 = µC3 = µC4 = µC5 

H1: µC1 ≠ µC2 = µC3 = µC4 = µC5 

For Rows: 

Ho: All the means of the Rows (R) are equal 

HA: At least one of the means of the Rows (R) is different 

H0: µR1 = µR2 = µR3 = µR4 = µR5 

H1: µR1 ≠ µR2 = µR3 = µR4 = µR5 

The second step: Calculating the Correction Factor (CF) 

𝐺𝑇 =  (𝑇, 𝐶𝑜, 𝐶𝑎, 𝑆𝑜, 𝑆ℎ

𝑛

𝑖=1,𝑗=1

) = sum of all observations on experimental units 

𝐺𝑇 =   (5.3 + 5.0

𝑛= 5

𝑖= 1,𝑗=1

+. . .5.6) = 108.6 

𝐶𝐹 =  
(𝐺𝑇)2

𝑁
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𝐶𝐹 =
 108.6 2

25
=  

11793.96

25
= 471.76  

where GT= grand Total, N=total number of observation, CF=Correction factor. 

The third step: Calculating the Total Sum of Squares (TSS) 

𝑇𝑆𝑆 =   [(𝑇1,1

𝑛=5

𝑖=1,𝑗=1

)2 + (𝐶𝑜1,2)2 +  … .  𝑇5,5)2 −  𝐶𝐹 

𝑇𝑆𝑆 =   [(5.3

𝑛=5

𝑖=1,𝑗=1

)2 + (5.0)2 +  … .  5.6)2 −  471.96 

𝑇𝑆𝑆 =  494.74 −  471.96 = 22.98 

CT 22 21.3 22.1 20.1 23.1 108.6 

RT 21.6 21.6 20.7 21.8 22.9 108.6 

TT 5.3 5 4.9 4.5 5.6 25.3 

CoT 5.5 5 6 5.4 5.9 27.8 

CaT 3.9 4.8 4.1 3.9 4.2 20.9 

SoT 4.2 3.6 4 3.9 4.1 19.8 

ShT 3.1 2.9 3.1 2.4 3.3 14.8 

The fourth step: Calculating the Treatment Sum of Squares (TrtSS) 

 𝑇𝑟𝑡 𝑆𝑆 =   (
(𝑇𝑇)2 + (𝐶𝑜𝑇)2 + (𝐶𝑎𝑇)2 + (𝑆𝑜𝑇)2 + (𝑆ℎ𝑇)2

𝑡
) − 𝐶𝐹 

𝑇𝑟𝑡 𝑆𝑆 =  (
 25.3 2 +  27.8 2 +  20.9 2 +  19.8 2 +  14.8 2

5
) − 

471.96 

𝑇𝑟𝑡 𝑆𝑆 =   
640.09 +  772.84 +  436.81 +  392.04 +  219.04

5
 − 471.96 

𝑇𝑟𝑡 𝑆𝑆 =   (
2460.82

5
) −  471.96 

𝑇𝑟𝑡 𝑆𝑆 = 492.16 − 471.96 = 20.41 
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where t=number of treatments, TT=Treatment T total, ShT=Treatment Sh total, 

CoT=Treatment Co total, CaT=Treatment Ca total, SoT=Treatment So total. 

The sixth step: Calculating the Rows Sum of Squares (RSS) 

𝑅𝑆𝑆 =   (
(𝑅1𝑇)2 + (𝑅2𝑇)2 + (𝑅3𝑇)2 + (𝑅4𝑇)2 + (𝑅5𝑇)2

𝑅
) − 𝐶𝐹 

𝑅𝑆𝑆 =   (
(21.6)2 + (21.6)2 + (20.7)2 + (20.1)2 + (23.1)2

5
) − 471.96 

𝑅𝑆𝑆 =   (
466.56 + 466.56 + 428.49 + 475.24 + 524.41

5
) − 471.96 

𝑅𝑆𝑆 =   (
2361.26

5
) − 471.96 

𝑅𝑆𝑆 =  472.25 − 471.96 

𝑅𝑆𝑆 =  0.49 

where R=number of rows, R1T=Treatment Row 1 total, R2T=Treatment Row 2 

total, R3T=Treatment Row 3 total, R4T=Treatment Row 4 total,  R5T=Treatment 

Row 5 total. 

The seventh step: Calculating the Column Sum of Squares (CSS) 

𝐶𝑆𝑆 =   (
(𝐶1𝑇)2 + (𝐶2𝑇)2 + (𝐶3𝑇)2 + (𝐶4𝑇)2 + (𝐶5𝑇)2

𝑅
) − 𝐶𝐹 

𝐶𝑆𝑆 =   (
(22)2 + (21.3)2 + (22.1)2 + (20.1)2 + (23.1)2

𝑅
) − 471.96 

𝐶𝑆𝑆 =   (
(484) + (453.69) + (488.41) + (404.01) + (533.61)

5
) − 471.96 

𝐶𝑆𝑆 =   (
2363.72

5
) − 471.96 

𝐶𝑆𝑆 =  472.74 − 471.96 

𝐶𝑆𝑆 =  0.99 
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where C=number of rows, C1T=Treatment Column 1 total, C2T=Treatment 

Column 2 total, C3T=Treatment Column 3 total, C4T=Treatment Column 4 total, 

C5T=Treatment Column 5 total. 

The eighth step: Calculating the Error Sum of Squares (ESS) 

𝐸𝑆𝑆 =  𝑇𝑆𝑆 − (𝑇𝑟𝑡𝑆𝑆 + 𝑅𝑆𝑆 + 𝐶𝑆𝑆) 

𝐸𝑆𝑆 =  22.98 − (20.41 + 0.49 + 0.99) 

𝐸𝑆𝑆 = ( 22.98 − 21.89) 

𝐸𝑆𝑆 =  1.1 

where ESS= Error Sum of Squares or unexplained sum of squares. 

The ninth step: Completing the ANOVA table 

ANOVA TABLE 

Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment t - 1 = 5 - 1 = 4 20.41 5.1025 46.39 3.48 

Row R – 1 = 5 – 1 = 4 0.49 0.1225 1.11 3.48 

Column C - 1 = 5 – 1 = 4 0.99 0.2475 2.25 3.48 

Error 
[C x R -1] –[(t-1)+(R-1)+(C-1)] 

=24-16 =10 
1.1 0.11 

  

Total (C X R) – 1 = 25 -1 =24 22.98 
   

      
Fcrit (5%) @ df of 4,10 = 3.48 

    
Fcrit (1%) @ df of 4,10 = 5.99 

    

Tenth step: looking up the F-critical table for the critical values 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 5.99 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 5.99 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 5.99 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 3.48 
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𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 3.48 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,10 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 3.48 

These values for the treatments, rows and columns can be obtained from the 

F-critical tables below and the values highlighted. 

 

 

Eleventh Step: Making the decisions and Conclusions. 

Treatments  

𝐹𝑐𝑎𝑙  4,10 = 46.39 > 𝐹𝑐𝑟𝑖𝑡  3.48  𝑎𝑡 5% 

𝐹𝑐𝑎𝑙  4,10  = 46.39 > 𝐹𝑐𝑟𝑖𝑡  5.99  𝑎𝑡 1% 

Since the F-calculated value (46.39) for the treatments at both 1% and 5% 

level of significance respectively are greater that the F-critical value (5.99) and 
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(3.48), the null hypothesis is rejected on the grounds that there is enough 

evidence to suggest that there is significant difference between the treatments. 

Hence we fail to reject the alternate hypothesis. 

Columns 

𝐹𝑐𝑎𝑙  4,10  = 2.25 < 𝐹𝑐𝑟𝑖𝑡  3.48  𝑎𝑡 5% 

𝐹𝑐𝑎𝑙  4,10 = 2.25 < 𝐹𝑐𝑟𝑖𝑡  5.99  𝑎𝑡 1% 

F calculated value (2.25) for the columns at both 1% and 5% level of 

significance respectively lesser than the f critical value (3.48) and (5.99), we fail 

to reject the null hypothesis and say there is no significant difference in the 

columns, hence no justification for blocking by columns. 

Rows 

𝐹𝑐𝑎𝑙  4,10 = 1.11 < 𝐹𝑐𝑟𝑖𝑡  3.48  𝑎𝑡 5% 

𝐹𝑐𝑎𝑙  4,10 = 1.11 < 𝐹𝑐𝑟𝑖𝑡  5.99  𝑎𝑡 1% 

F calculated value (1.11) for the rows at both 1% and 5% level of 

significance respectively lesser than the F-critical value (3.48) and (5.99), we 

fail to reject the null hypothesis and say there is no significant difference in the 

rows, hence no justification for blocking by rows. 

Since there is no justification for blocking by rows and columns, it presupposes 

that the LSD is not the right design for the experiment in question. Since the 

treatments are significantly different, there is the need to perform the Lsd (Least 

significance difference) test or the Duncan Multiple Range Test (DMRT). 

Handling Missing Data under Latin Square Design (LSD). 

In every experimental design data can be missing destruction or damage of 

living things being used as experimental materials, improper allocation of 
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treatments, loss of materials due to harvesting and processing of materials and 

illogical data that cannot be considered as reliable results due to how extreme 

the values are. 

For single missing data under the LSD, the formula below can be used: 

𝑋𝑂 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

XO=missing data observed, RO=total observed row values with missing data, 

CO=total observed column values with missing data, TO=total observed 

treatment values with missing data, GO=grand total of all observed value, 

t=number of treatments. 

Formula for the Computation of Bias Value 

𝛽0 =  
[𝐺𝑂 − 𝑅𝑂 − 𝐶𝑂 − 𝑇𝑂(𝑡 − 1)]2 

[(𝑡 − 1)(𝑡 − 2)]2
 

β0= bias value 

For adjustment of the analysis based on the estimation of the missing data the 

following is done 

1. The value one (1) is substracted from the total degree of freedom and the 

unexplained or error degree of freedom. 

2. The biased value must be computed and subtracted from the Total Sum of 

Squares and Treatment Sum of Squares and not that of the column and the 

row. 
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Taking the 5 x 5 LSD table below, the missing that can be computed for as 

follows: 

 5X5 LSD 

 Milk Extracted in cm3/kg of treatment 

 Column1 Column2 Column3 Column4 Column5 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 

Row2 Co = 𝑌21  T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.9 

Row4 So = 4.2  Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 

Row5 Sh = 3.1 Ca = 4.8 So = 4.0 Co = 5.4 T = 5.6 

 

 5X5 LSD   

  Milk Extracted in cm3/kg of treatment   

 Column1 Column2 Column3 Column4 Column5 Row Total  

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 𝑌21  T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 16.1 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.9 20.7 

Row4 So = 4.2  Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 4.8 So = 4.0 Co = 5.4 T = 5.6 22.9 

Column Total  16.5 21.3 22.1 20.1 23.1 103.1 

𝑇𝑜 𝐶𝑜 = 𝐶𝑜12 + 𝐶𝑜35 + 𝐶𝑜43+𝐶𝑜54  

𝑇𝑜 𝐶𝑜 = 5.0 +  6.0 + 5.4 + 5.9 = 22.3 

𝐺𝑜 =  𝑌𝑖𝑗

𝑛=5

𝑖𝑗

= 𝑌11 + 𝑌12 +. . . 𝑌55 = 5.3 + 5.0+. . .5.6 = 103.1 

𝑅𝑜 = 𝑌22 + 𝑌23 +. . . 𝑌25  = 5.0 + 3.1 + 3.9 + 4.1 = 16.1 

𝐶𝑜 = 𝑌11 + 𝑌31+. . . 𝑌51  = 5.3 + 3.9 + 4.2 + 3.1 = 16.5 

𝑌21 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   



Basic Concepts and Applications of Experimental Designs and Analysis 

 

82 http://www.sciencepublishinggroup.com 

𝑌21 =   
5(16.1 + 16.5 + 22.3) − 206.2)

 5 − 1 (5 − 2)
   

𝑌21 =   
5(54.4) − 206.2

12
   

𝑌21 =   
274.5 − 206.2

12
   

𝑋𝑂 =   
68.3

12
   

𝑋𝑂 =  5.69  

The bias is now computed using the formula: 

𝛽𝑂 =  
[𝐺𝑂 − 𝑅𝑂 − 𝐶𝑂 − 𝑇𝑂(𝑡 − 1)]2 

[(𝑡 − 1)(𝑡 − 2)]2
 

𝛽𝑂 =  
[103.1 − 16.1 − 16.5 − 22.3(5 − 1)]2 

[(5 − 1)(5 − 2)]2
 

𝛽𝑂 =  
[103.1 − 16.1 − 16.5 − 22.3(4)]2  

[(4)(3)]2
 

𝛽𝑂 =  
[103.1 − 16.1 − 16.5 − 89.2]2 

[12]2
 

𝛽𝑂 =  
[−18.7]2 

[12]2
 

𝛽𝑂 =  
[349.69]2 

[144]2
 

𝛽𝑂 =  
[349.69] 

[144]
 

𝛽𝑂 =  2.43 

Now the table can be completed with the estimated missing data in order to 

do the Analysis of Variance (Anova) table 
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5X5 LSD 

Milk Extracted in cm3/kg of treatment 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.9 20.7 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 4.8 So = 4.0 Co = 5.4 T = 5.6 22.9 

Column Total 22.19 21.3 22.1 20.1 23.1 108.79 

 

CT 22.19 21.3 22.1 20.1 23.1 108.79 

RT 21.6 21.79 20.7 21.8 22.9 108.79 

TT 5.3 5 4.9 4.5 5.6 25.3 

CoT 5.69 5 6 5.4 5.9 27.99 

CaT 3.9 4.8 4.1 3.9 4.2 20.9 

SoT 4.2 3.6 4 3.9 4.1 19.8 

ShT 3.1 2.9 3.1 2.4 3.3 14.8 

The first step: Stating of the Hypothesis. 

The hypothesis stated remains the same. 

The second step: Calculating the Correction Factor (CF) 

𝐺𝑇 =  (𝑇, 𝐶𝑜, 𝐶𝑎, 𝑆𝑜, 𝑆ℎ𝑛
𝑖=1,𝑗=1 ) = sum of all observations on experimental 

units 

𝐺𝑇 =   (5.3 + 5.0

𝑛= 5

𝑖= 1,𝑗=1

+. . .5.6) = 108.79 

𝐶𝐹 =  
(𝐺𝑇)2

𝑁
 

𝐶𝐹 =
 108.79 2

25
=  

11835.26

25
= 473.41  



Basic Concepts and Applications of Experimental Designs and Analysis 

 

84 http://www.sciencepublishinggroup.com 

where GT= Grand Total, N=total number of observation, CF=Correction factor. 

The third step: Calculating the Total Sum of Squares (TSS) 

𝑇𝑆𝑆 =   [(𝑇1,1

𝑛=5

𝑖=1,𝑗=1

)2 + (𝐶𝑜1,2)2 +  … .  𝑇5,5)2 −  𝐶𝐹 

𝑇𝑆𝑆 =   [(5.3

𝑛=5

𝑖=1,𝑗=1

)2 + (5.0)2 +  … .  5.6)2 −  473.41 

𝑇𝑆𝑆 =  496.87 −  473.41 = 23.46 

The fourth step: Calculating the Treatment Sum of Squares (TrtSS) 

 𝑇𝑟𝑡 𝑆𝑆 =   (
(𝑇𝑇)2 + (𝐶𝑜𝑇)2 + (𝐶𝑎𝑇)2 + (𝑆𝑜𝑇)2 + (𝑆ℎ𝑇)2

𝑡
) − 𝐶𝐹 

𝑇𝑟𝑡 𝑆𝑆 =    
 25.3 2 +  27.99 2 +  20.9 2 +  19.8 2 +  14.8 2

5
 − 473.41 

𝑇𝑟𝑡 𝑆𝑆 =    
640.09 +  783.44 +  436.81 +  392.04 +  219.04

5
 − 473.41 

𝑇𝑟𝑡 𝑆𝑆 =   (
2471.42

5
) −  473.41 

𝑇𝑟𝑡 𝑆𝑆 = 494.28 − 473.41 = 20.87 

where t=number of treatments, TT=Treatment T total, ShT=Treatment Sh total, 

CoT=Treatment Co total, CaT=Treatment Ca total, SoT=Treatment So total. 

The sixth step: Calculating the Rows Sum of Squares (RSS) 

𝑅𝑆𝑆 =   (
(𝑅1𝑇)2 + (𝑅2𝑇)2 + (𝑅3𝑇)2 + (𝑅4𝑇)2 + (𝑅5𝑇)2

𝑅
) − 𝐶𝐹 

𝑅𝑆𝑆 =   (
 21.6 2 +  21.79 2 +  20.7 2 +  21.8 2 +  22.9 2

5
) − 473.41 

𝑅𝑆𝑆 =   (
466.56 + 474.80 + 428.49 + 475.24 + 524.41

5
) − 473.41 
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𝑅𝑆𝑆 =   (
2369.50

5
) − 473.41 

𝑅𝑆𝑆 =  473.90 − 473.41 

𝑅𝑆𝑆 =  0.49 

where R=number of rows, R1T=Treatment Row 1 total,  R2T=Treatment Row 2 

total, R3T=Treatment Row 3 total, R4T=Treatment Row 4 total, R5T=Treatment 

Row 5 total. 

The seventh step: Calculating the Column Sum of Squares (CSS) 

𝐶𝑆𝑆 =   (
(𝐶1𝑇)2 + (𝐶2𝑇)2 + (𝐶3𝑇)2 + (𝐶4𝑇)2 + (𝐶5𝑇)2

𝑅
) − 𝐶𝐹 

𝐶𝑆𝑆 =   (
(22.19)2 + (21.3)2 + (22.1)2 + (20.1)2 + (23.1)2

𝑅
) − 473.41 

𝐶𝑆𝑆 =   (
(492.40) + (453.69) + (488.41) + (404.01) + (533.61)

5
) − 473.41 

𝐶𝑆𝑆 =   (
2372.12

5
) − 473.41 

𝐶𝑆𝑆 =  474.42 − 473.41 

𝐶𝑆𝑆 =  1.01 

where C=number of rows, C1T=Treatment Column 1 total, C2T=Treatment 

Column 2 total, C3T=Treatment Column 3 total, C4T=Treatment Column 4 total, 

C5T=Treatment Column 5 total. 

The eighth step: Calculating the Error Sum of Squares (ESS) 

𝐸𝑆𝑆 =  𝑇𝑆𝑆 − (𝑇𝑟𝑡𝑆𝑆 + 𝑅𝑆𝑆 + 𝐶𝑆𝑆) 

𝐸𝑆𝑆 =  23.46 − (20.87 + 0.49 + 1.01) 

𝐸𝑆𝑆 = (23.46 − 22.38) 

𝐸𝑆𝑆 =  1.1 
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where ESS=Error Sum of Squares or unexplained sum of squares. 

The ninth step: Making the necessary Adjustments in the Analysis and 

Completing the ANOVA table 

Making the necessary Adjustments in the Analysis 

The following adjustments must be done in completing the Anova table: 

1. Deduct the value (1) from the total degree of freedom and the unexplained 

or error degree of freedom 

2. Subtract the computed bias from the Total Sum of Squares (TSS) and 

Treatment Sum of Squares (TrtSS) 

Adjustments 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑓 =  C x R − 1 − 1 = 25 − 1 − 1 = 23 

𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 =  C x R − 1 –   t − 1 +  R − 1 +  C − 1  − 1  

= 24 − 16 − 1 = 9 

Adjusted TSS = 23.45 − 𝛽𝑂  

𝑤ℎ𝑒𝑟𝑒 𝛽𝑂 = 2.43 

Adjusted TSS = 23.45 −  2.43 = 21.02 

Adjusted TrtSS = 20.87 − 𝛽𝑂  

Adjusted TrtSS = 20.87 −  2.43 = 18.44 
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ANOVA TABLE 

Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment 4 18.44 4.61 38.78 3.63 

Row 4 0.5 0.13 1.05 3.63 

Column 4 1.01 0.25 2.12 3.63 

Error 9 1.07 0.12   

Total 23 21.02    

Fcrit (5%) @ df of 4,9 3.63     

Fcrit (1%) @ df of 4,9 6.42     

Tenth step: looking up the F-critical table for the critical values 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 3.63 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 3.63 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 3.63 

The Eleventh step: Making the Decision and Conclusions 

The values obtained from the F-critical table compared with the F-values 

calculated for the Treatments, Rows and Columns reveals the decisions and 

conclusions remain the same as the table without the missing data. This proves 

the missing data value has been accurately estimated. 

4.2  Handling More than One Missing Data Under LSD 

The procedure is the same as done in the case of RCBD but the formula for 

estimating the missing data values differ. For LSD, the following formula are 

used: 
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𝑌𝑖𝑗 =  
(𝑇𝑚 + 𝐶𝑚 +  𝑅𝑚 )

2
 

This formula can apply only to LSD when estimating average missing data 

where Yij=estimated average missing data value, Tm=the mean value of 

treatment with the missing data, Cm=the mean value of Column with the missing 

data, Rm=the mean value of Row with the missing data. 

𝑌𝑖𝑗 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

Yij=missing data observed, RO=total observed row values with missing data, 

CO=total observed column values with missing data, TO=total observed 

treatment values with missing data, GO=grand total of all observed value, 

t=number of treatments. 

𝛽0 =  
[𝐺𝑂 − 𝑅𝑂 − 𝐶𝑂 − 𝑇𝑂(𝑡 − 1)]2 

[(𝑡 − 1)(𝑡 − 2)]2
 

β0= bias value 

For example to compute for the missing data under LSD as seen in the table 

above, the approach below is used: 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 𝑌35  14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 𝑌52  So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 16.5 22.1 20.1 17.2 98.09 
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We first find the average estimated missing data using the formula: 

𝑌𝑖𝑗 =  
(𝑇𝑚 + 𝐶𝑚 +  𝑅𝑚 )

3
 

For 𝑌52 =  
(𝑇𝑚 +𝐶𝑚 + 𝑅𝑚 )

3
 

𝐶𝑚 =  
 𝑌11 + 𝑌22 + 𝑌32 + 𝑌42

5
=

16.5

5
= 3.3  

𝑅𝑚 =  
 𝑌51 + 𝑌53 + 𝑌54 + 𝑌55

5
=

18.1

5
= 3.62 

𝑇𝑚 =  
 𝑌31 + 𝑌13 + 𝑌24 + 𝑌45

5
 

𝑇𝑚 =  
 (3.9 + 4.1 + 3.9 + 4.2) 

5
=

16.1

5
 3.22 

𝑌52 =  
(3.22 + 3.3 +  3.62)

3
=

10.14

3
= 3.38 

For 𝑌35 =  
(𝑇𝑚 +𝐶𝑚 + 𝑅𝑚 )

2
 

𝐶𝑚 =  
 𝑌15 + 𝑌25 + 𝑌45 + 𝑌55

5
=

17.2

5
= 3.44 

𝑅𝑚 =  
 𝑌31 + 𝑌32 + 𝑌33 + 𝑌34

5
=

14.8

5
= 2.96 

𝑇𝑚 =  
 𝑌21 + 𝑌12 + 𝑌43 + 𝑌54

5
=

5.69 + 5.0 + 6.0 + 5.4

5
= 4.42 

𝑌35 =  
(4.42 + 3.44 +  2.96)

2
=

10.82

2
= 3.61 

Since the estimated average values of the missing data 𝑌52  and 𝑌35 have been 

computed, the values of each of this missing data can now be estimated by 

completing the table with one of the average estimated value where finding the 

estimated value of the other one. 
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5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 3.61 14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 𝑌52  So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 16.5 22.1 20.1 20.81 101.7 

In order to estimate the value of 𝑌52, the average estimated value of 𝑌35  is 

substituted in the table as seen. 

𝑌52 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 𝑌51 + 𝑌53+. . . +𝑌55  

𝑅𝑂 = 3.1 + 4.0 + 5.4 + 5.6 =  18.1 

𝐶𝑂 = 𝑌12 +  𝑌22 +. . . +𝑌52  

𝐶𝑂 = 5.0 + 5.0 + 3.6 + 2.9 = 16.5 

𝑇𝑂(𝐶𝑎) = 𝑌51 + 𝑌53+. . . +𝑌55  

𝑇𝑂 𝐶𝑎 = 3.9 +  4.1 + 3.9 + 4.2 = 16.1  

𝑌52 =   
5(18.1 + 16.5 + 16.1) − 2(101.7) 

 5 − 1 (5 − 2)
   

𝑌52 =   
5(50.7) − 203.4 

 4 (3)
   

𝑌52 =   
253.5 − 203.4 

12
   

𝑌52 =   
50.1 

12
   

𝑌52 =  4.18  
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To compute the estimate for 𝑌35 , substitute the value of 𝑌52 = 4.18 into the 

table as shown: 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 𝑌35  14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 4.18 So = 4.0 Co = 5.4 T = 5.6 22.28 

Column Total 22.19 20.68 22.1 20.1 17.2 102.27 

𝑌35 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 𝑌31 + 𝑌32+. . . +𝑌34  

𝑅𝑂 = 3.9 + 3.6 + 4.9 + 2.4 = 14.8  

𝐶𝑂 = 𝑌15 +  𝑌25 +. . . +𝑌55  

𝐶𝑂 = 3.3 + 4.1 + 4.2 + 5.6 = 17.2 

𝑇𝑂 𝐶𝑎 = 𝑌21 + 𝑌12+. . . +𝑌54  

𝑇𝑂 𝐶𝑎 = 5.69 + 5.0 + 6.0 + 5.4 = 22.09 

𝑌35 =   
5(14.8 + 17.2 + 22.09) − 2(102.27) 

 5 − 1 (5 − 2)
   

𝑌35 =   
5(54.09) − 2(102.27) 

 4 (3)
   

𝑌35 =   
270.45 − 204.54 

12
   

𝑌35 =   
65.91 

12
   

𝑌35 =  5.50  
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The estimated missing data for 𝑌35 = 5.50. This is replaced in the table and 

the value of 𝑌52 is estimated again. This step is repeated until a constant value is 

obtained for all the missing data before the accurate missing data values are 

obtained. 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.50 20.30 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 𝑌52  So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 16.5 22.1 20.1 22.70 103.9 

𝑌52 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 16.5  

𝐶𝑂 = 18.1 

𝑇𝑂 𝐶𝑎 = 3.9 + 4.1 + 3.9 + 4.2 = 16.1 

𝑌52 =   
5(16.5 + 18.1 + 16.1) − 2(103.9) 

 5 − 1 (5 − 2)
   

𝑌52 =   
5(50.7) − 2(103.9) 

 4 (3)
   

𝑌52 =   
253.5 − 207.8 

12
   

𝑌52 =   
45.70 

12
   

𝑌52 =  3.81  
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Since the value for the previous estimated of 𝑌52 = 4.18 is not the same the 

3.81 as obtained now, the process must be repeated. We then substitute the 

value of 𝑌52 = 3.81 into the table to estimate for 𝑌35 

𝑌35 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 14.8  

𝐶𝑂 = 17.2 

𝑇𝑂 𝐶𝑜 = 22.09 

𝑌35 =   
5(14.8 + 17.2 + 22.09) − 2(101.27) 

 5 − 1 (5 − 2)
   

𝑌35 =   
5(54.09) − 2(101.27) 

 4 (3)
   

𝑌35 =   
270.45 − 207.8 

12
   

𝑌35 =   
67.91 

12
   

𝑌35 =  5.66  

Substitute 𝑌35 = 5.66 into the table and compute for 𝑌52 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.66 14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 𝑌52  So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 16.5 22.1 20.1 17.2 103.75 

𝑌52 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
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𝑅𝑂 = 18.1 

𝐶𝑂 = 16.5 

𝑇𝑂 𝐶𝑎 = 16.1 

𝑌52 =   
5(18.1 + 16.5 + 16.1) − 2(103.75) 

 5 − 1 (5 − 2)
   

𝑌52 =   
5(50.7) − 2(103.75) 

 4 (3)
   

𝑌52 =   
253.5 − 207.5 

12
   

𝑌52 =   
46 

12
   

𝑌52 =  3.83  

Substitute 𝑌52 = 3.83 into the table and compute for 𝑌35 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 𝑌35  14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 3.83 So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 20.33 22.1 20.1 17.2 103.9 

𝑌35 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 14.8 

𝐶𝑂 = 17.2 

𝑇𝑂 𝐶𝑜 = 22.09 

𝑌35 =   
5(14.8 + 17.2 + 22.09) − 2(101.92) 

 5 − 1 (5 − 2)
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𝑌35 =   
5(54.09) − 2(101.92) 

 4 (3)
   

𝑌35 =   
270.45 − 203.84 

12
   

𝑌35 =   
66.61 

12
   

𝑌35 =  5.55  

Substitute 𝑌35 = 5.55 into the table and compute for 𝑌52 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.55 20.35 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 𝑌52  So = 4.0 Co = 5.4 T = 5.6 18.1 

Column Total 22.19 16.5 22.1 20.1 22.75 103.64 

𝑌52 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 18.1 

𝐶𝑂 = 16.5 

𝑇𝑂 𝐶𝑜 = 16.1 

𝑌52 =   
5(18.1 + 16.5 + 16.1) − 2(103.64) 

 5 − 1 (5 − 2)
   

𝑌52 =   
5(50.7) − 2(103.64) 

 4 (3)
   

𝑌52 =   
253.50 − 207.28 

12
   

𝑌52 =   
46.22 

12
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𝑌52 =  3.85  

Substitute 𝑌52 = 5.55 into the table and compute for 𝑌35 

 
5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 𝑌52  14.8 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 3.85 So = 4.0 Co = 5.4 T = 5.6 21.95 

Column Total 22.19 20.35 22.1 20.1 22.75 101.94 

𝑌35 =   
𝑡(𝑅𝑂 + 𝐶𝑂 + 𝑇𝑂) − 2𝐺𝑂  

 𝑡 − 1 (𝑡 − 2)
   

𝑅𝑂 = 14.8 

𝐶𝑂 = 17.2 

𝑇𝑂 𝐶𝑜 = 22.09 

𝑌35 =   
5(14.8 + 17.2 + 22.09) − 2(103.64) 

 5 − 1 (5 − 2)
   

𝑌35 =   
5(54.09) − 2(101.94) 

 4 (3)
   

𝑌35 =   
270.45 − 203.88 

12
   

𝑌35 =   
66.57 

12
   

𝑌35 =  5.55  

Since the 𝑌35 = 5.55 is the same as obtained previously, then it presupposes 

that the right missing data has been estimated for 𝑌35. Therefore the estimated 

missing data values for 𝑌52 and 𝑌35 are 3.85 and 5.55 respectively. 
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5X5 LSD 

 

 
Milk Extracted in cm3/kg of treatment 

 

 
Column1 Column2 Column3 Column4 Column5 Row Total 

Row1 T = 5.3 Co = 5.0 Ca = 4.1 So = 3.9 Sh = 3.3 21.6 

Row2 𝐶𝑜 = 5.69 T = 5.0 Sh = 3.1 Ca = 3.9 So = 4.1 21.79 

Row3 Ca = 3.9 So = 3.6 T = 4.9 Sh = 2.4 Co = 5.55 20.35 

Row4 So = 4.2 Sh = 2.9 Co = 6.0 T = 4.5 Ca = 4.2 21.8 

Row5 Sh = 3.1 Ca = 3.85 So = 4.0 Co = 5.4 T = 5.6 21.95 

Column Total 22.19 20.35 22.1 20.1 22.75 107.49 

 

CT 22.19 20.35 22.1 20.1 22.75 107.49 

RT 21.6 21.79 20.35 21.8 21.95 107.49 

TT 5.3 5 4.9 4.5 5.6 25.3 

CoT 5.69 5 6 5.4 5.55 27.64 

CaT 3.9 3.85 4.1 3.9 4.2 19.95 

SoT 4.2 3.6 4 3.9 4.1 19.8 

ShT 3.1 2.9 3.1 2.4 3.3 14.8 

The first step: Stating of the Hypothesis 

The hypothesis stated remains the same. 

The second step: Calculating the Correction Factor (CF) 

𝐺𝑇 =  (𝑇, 𝐶𝑜, 𝐶𝑎, 𝑆𝑜, 𝑆ℎ𝑛
𝑖=1,𝑗=1 ) =sum of all observations on experimental 

units 

𝐺𝑇 =   (5.3 + 5.0

𝑛= 5

𝑖= 1,𝑗=1

+. . .5.6) = 107.49 

𝐶𝐹 =  
(𝐺𝑇)2

𝑁
 

𝐶𝐹 =
 107.49 2

25
=  

11554.1

25
= 462.16  
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where GT= Grand Total, N=total number of observation, CF=Correction factor. 

The third step: Calculating the Total Sum of Squares (TSS) 

𝑇𝑆𝑆 =   [(𝑇1,1

𝑛=5

𝑖=1,𝑗=1

)2 + (𝐶𝑜1,2)2 +  … .  𝑇5,5)2 −  𝐶𝐹 

𝑇𝑆𝑆 =   [(5.3

𝑛=5

𝑖=1,𝑗=1

)2 + (5.0)2 +  … .  5.6)2 −  462.16 

𝑇𝑆𝑆 =  484.64 −  462.16 = 22.48 

The fourth step: Calculating the Treatment Sum of Squares (TrtSS) 

𝑇𝑟𝑡 𝑆𝑆 =   (
(𝑇𝑇)2+(𝐶𝑜𝑇 )2+(𝐶𝑎𝑇 )2+(𝑆𝑜𝑇 )2+(𝑆ℎ𝑇 )2

𝑡
) − 𝐶𝐹  

𝑇𝑟𝑡 𝑆𝑆 =   (
 25.3 2+ 27.64 2+ 19.95 2+ 19.8 2+ 14.8 2

5
) − 462.16 

𝑇𝑟𝑡 𝑆𝑆 =    
640.09 + 763.97 + 398.0 + 392.04 + 219.04

5
 − 462.16  

𝑇𝑟𝑡 𝑆𝑆 =   (
2413 .14

5
) −  462.16  

𝑇𝑟𝑡 𝑆𝑆 = 482.63 − 462.16 = 20.47  

where t=number of treatments, TT=Treatment T total, ShT=Treatment Sh total, 

CoT=Treatment Co total, CaT=Treatment Ca total, SoT=Treatment So total. 

The sixth step: Calculating the Rows Sum of Squares (RSS) 

𝑅𝑆𝑆 =   (
(𝑅1𝑇)2+(𝑅2𝑇 )2+(𝑅3𝑇 )2+(𝑅4𝑇)2+(𝑅5𝑇 )2

𝑅
) − 𝐶𝐹  

𝑅𝑆𝑆 =   (
 21.6 2+ 21.79 2+ 20.35 2+ 21.8 2+ 21.95 2

5
) − 462.16  

𝑅𝑆𝑆 =   (
466.56+474.80+414.12+475.24+481.80

5
) − 462.16  

𝑅𝑆𝑆 =   (
2312 .53

5
) − 462.16  

𝑅𝑆𝑆 =  462.51 − 462.16  
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𝑅𝑆𝑆 =  0.35  

where R=number of rows, R1T=Treatment Row 1 total, R2T=Treatment Row 2 

total, R3T=Treatment Row 3 total, R4T=Treatment Row 4 total, R5T=Treatment 

Row 5 total. 

The seventh step: Calculating the Column Sum of Squares (CSS) 

𝐶𝑆𝑆 =   (
(𝐶1𝑇)2 + (𝐶2𝑇)2 + (𝐶3𝑇)2 + (𝐶4𝑇)2 + (𝐶5𝑇)2

𝑅
) − 𝐶𝐹 

𝐶𝑆𝑆 =   (
(22.19)2 + (20.35)2 + (22.1)2 + (20.1)2 + (22.75)2

𝑅
) − 462.16 

𝐶𝑆𝑆 =   (
(492.40) + (414.12) + (488.41) + (404.01) + (517.56)

5
) − 462.16 

𝐶𝑆𝑆 =   (
2316.50

5
) − 462.16 

𝐶𝑆𝑆 =  463.30 − 462.16 

𝐶𝑆𝑆 = 1.14 

where C=number of rows, C1T=Treatment Column 1 total, C2T=Treatment 

Column 2 total, C3T=Treatment Column 3 total, C4T=Treatment Column 4 total, 

C5T=Treatment Column 5 total. 

The eighth step: Calculating the Error Sum of Squares (ESS) 

𝐸𝑆𝑆 =  𝑇𝑆𝑆 − (𝑇𝑟𝑡𝑆𝑆 + 𝑅𝑆𝑆 + 𝐶𝑆𝑆) 

𝐸𝑆𝑆 =  22.48 − (20.47 + 0.35 + 1.14) 

𝐸𝑆𝑆 =  22.48 − 21.96) 

𝐸𝑆𝑆 =  0.52 

where ESS= Error Sum of Squares or unexplained sum of squares. 

Now the bias can be computed using the formula:  
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Calculating bias using Ca as the missing data 

𝛽𝑂 =  
[𝐺𝑂 − 𝑅𝑂 − 𝐶𝑂 − 𝑇𝑂(𝑡 − 1)]2 

[(𝑡 − 1)(𝑡 − 2)]2
 

βO= bias value 

𝐺𝑂 = 103.64,  𝐶𝑂 = 16.5,  𝑅𝑂 = 18.1,  𝑇𝑂 = 16.1 

𝛽𝑂 =  
[103.64 − 18.1 − 16.5 − 16.1(5 − 1)]2 

[(5 − 1)(5 − 2)]2
 

𝛽𝑂 =  
[103.64 − 34.6 − 64.4)]2 

[(4)(3)]2
 

𝛽𝑂 =  
[103.64 − 99)]2 

[(12)]2
 

𝛽𝑂 =  
[4.64]2  

[12]2
 

𝛽𝑂 =  
[21.53] 

[144]
= 0.15 

Calculating bias using Co as the missing data: 

𝛽𝑂 =  
[𝐺𝑂 − 𝑅𝑂 − 𝐶𝑂 − 𝑇𝑂(𝑡 − 1)]2 

[(𝑡 − 1)(𝑡 − 2)]2
 

βO= bias value 

𝐺𝑂 = 101.94,  𝐶𝑂 = 17.2,  𝑅𝑂 = 14.8,  𝑇𝑂 = 22.09 

𝛽𝑂 =  
[101.94 − 14.8 − 17.2 − 22.09(5 − 1)]2 

[(5 − 1)(5 − 2)]2
 

𝛽𝑂 =  
[101.94 − 32 − 88.36]2 

[(4)(3)]2
 

𝛽𝑂 =  
[101.94 − 20.36)]2  

[(12)]2
 

𝛽𝑂 =  
[−18.42]2 

[12]2
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𝛽𝑂 =  
[339.30] 

[144]
= 2.36 

The ninth step: Making the necessary Adjustments in the Analysis and 

Completing the ANOVA table. 

Making the necessary Adjustments in the Analysis. 

The following adjustments must be done in completing the Anova table: 

1. Deduct the value (1) from the total degree of freedom and the unexplained 

or error degree of freedom. 

2. Subtract the computed bias from the Total Sum of Squares (TSS) and 

Treatment Sum of Squares (TrtSS). 

Adjustments 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑓 =  C x R − 1 − 1 = 25 − 1 − 1 = 23 

𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 =  C x R − 1 –   t − 1 +  R − 1 +  C − 1  − 1  

= 24 − 16 − 1 = 9 

Using Ca as treatment having the missing data 

Adjusted TSS = 22.48 − 𝛽𝑂  

𝑤ℎ𝑒𝑟𝑒 𝛽𝑂 = 0.15 

Adjusted TSS = 22.48 − 0.15 = 22.33 

Adjusted TrtSS = 20.47 − 𝛽𝑂  

Adjusted TrtSS = 20.47 − 0.15 = 20.32 

Using Co as treatment having the missing data 

Adjusted TSS = 22.48 − 𝛽𝑂  

𝑤ℎ𝑒𝑟𝑒 𝛽𝑂 = 2.36 

Adjusted TSS = 22.48 − 2.36 = 20.12 
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Adjusted TrtSS = 20.47 − 𝛽𝑂  

Adjusted TrtSS = 20.47 − 2.36 = 18.11 

Anova table when as missing data is from 𝐶𝑎 treatment: 

ANOVA TABLE 

Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment 4 20.32 5.08 9.77 3.63 

Row 4 0.35 0.09 0.17 3.63 

Column 4 1.14 0.29 0.55 3.63 

Error 9 0.52 0.06   

Total 23 22.33 0.97   

Fcrit (5%) @ df of 4,9 3.63     

Fcrit (1%) @ df of 4,9 6.42     

Anova table when as missing data is from Co treatment: 

ANOVA TABLE 

Sources of Variation df SS MS Fcal. Fcrit. (5%) 

Treatment 4 18.11 4.53 8.71 3.63 

Row 4 0.35 0.09 0.17 3.63 

Column 4 1.14 0.29 0.55 3.63 

Error 9 0.52 0.06   

Total 23 20.12 0.87   

Fcrit (5%) @ df of 4,9 3.63     

Fcrit (1%) @ df of 4,9 6.42     

Tenth step: looking up the F-critical table for the critical values 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 1% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 6.42 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 3.63 
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𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝑅𝑜𝑤𝑠 = 3.63 

𝐹𝑐𝑟𝑖𝑡 5% 𝑎𝑡 𝑑𝑓 𝑜𝑓 4,9 𝑓𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = 3.63 

The Eleventh step: Making the Decision and Conclusions. 

The values obtained from the F-critical table compared with the F-values 

calculated for the Treatments, Rows and Columns reveals the decisions and 

conclusions remain the same as the table without the missing data. This proves 

the missing data value has been accurately estimated. 
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Abstract 

A researcher may have two or more treatments to handle at a time and these 

treatments to be handled may or may not interact with each other at certain 

levels. The effects of these interactions cannot be established with the types of 

designs such as CRD, RCBD and LSD. The multifactorial design thus helps to 

establish whether the variations between each type of factor and their interactions 

are significantly different or not. This paper thus explains how the multifactorial 

design is used to establish whether there are any significant differences between 

the treatment types and their interactions.  
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Treatments, Factorial, Factor, Interaction, Variations 
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5.1  Introduction 

Designs like CRD, RCBD and LSD have been used variously under 

appropriate situations for the design and analysis of experiments. In every 

experiment, a researcher is bound to handle one or more treatments – that which 

is expected to be subjected to an experimental material or unit or plot. A factor is 

defined as a basic treatment and in terms of a multifactorial or factorial designs, a 

treatment in a sense is a combination of two or more levels of factors. This means 

that in considering two levels of factors or treatments like the amount of sugar 

used in the preparation of porridge (A) – half cup of sugar (A1) and two cups of 

sugar (A2); and the quantity of porridge prepared (Q) – twenty (20) litres (Q1) and 

twenty-five (25) litres (Q2) prepared. Thus in handling of factors and treatments at 

different levels, the researcher would be faced with how to deal or cope with 

multiple factors. However it must be noted that CRD, RCBD and LSD can be 

designed and contained in multifactorial designs. It is the appropriate design used 

in handling treatments with different levels in order to ascertain or establish 

whether there exist significant differences between the various factor levels or 

treatment levels as well as the interactions between the treatments. 

The factorial experimental designs are more complicated because they are 

used for designing and analyzing many factors which can be observed on large 

experimental units and thus not suitable for designing simple experiments. It 

allows for greater precision when estimating the overall effects of factors as it 

helps to expose what is referred to as hidden replications. For instance when 

studying two factors say A and B with two levels A1, A2 and B1, B2 respectively, 

the researcher would observe the normal required plots such as A, B and AB 

and extra plots or units. In all, the researcher would observe these plots or units: 

A1B1, A1B2, A2B1, A2B2, (A3B3, this represents interaction between AB).  
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It must however be noted that the objectives of factorial experimental designs 

include testing of the main effects or factors and their interactions, and not the 

treatments. Hence the treatment Mean Squares (MSQ) are not found. 

To consider a CRD, let us assume a researcher wants to study the time it 

takes for the same quantity of milk from cow (A1) and soyabean (A2) to 

ferment into yoghurt under two temperature conditions B1 and B2. When this 

experiment is replicated four times, it can be represented below: 

5.2  CRD 

 A1 A2 

REP B1 B2 B1 B2 

1 5.4 5.3 5.1 4.7 

2 4.6 5.6 4.5 4.9 

3 4.1 4.8 5.6 5.2 

4 3.9 4.8 4.5 5.0 

The first step in the analysis is to put forth the hypothesis: 

Before analyzing the data, there is the need to put forward the following 

hypotheses 

Ho: µA1B1 = µA1B2 = µA2B2 = µA2B2  

H1: µA1B1 ≠ µA1B2 = µA2B2 = µA2B2  

Ho: All the means of the treatments are equal 

HA: At least one of the means of the treatments is different 

Ho: µA1 = µA2  
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H1: µA1 ≠ µA2  

Ho: The means of the 2 levels of A are equal 

HA: The means of the 2 levels of A are unequal 

Ho: µB1 = µB2  

H1: µB1 ≠ µB2  

Ho: The means of the 2 levels of B are equal 

HA: The means of the 2 levels of B are unequal 

Ho: µA x B = µA x B 

H1: µA x B ≠ µA x B 

Ho: The effects of the interaction of two factors at the 2 levels are the same 

HA: The effects of the interaction of two factors at the 2 levels are different 

  A1 A2 

 REP B1 B2 B1 B2 

 1 5.4 5.3 5.1 4.7 20.5 

2 4.6 5.6 4.5 4.9 19.6 

3 4.1 4.8 5.6 5.2 19.7 

4 3.9 4.8 4.5 5 18.2 

 

18 20.5 19.7 19.8 78 

𝑇𝑡𝐴1𝐵1
=   (5.4 + 4.6 + ⋯+ 3.9) = 18  

𝑇𝑡𝐴1𝐵2
=   (5.3 + 5.6 + ⋯+ 4.8) = 20.5 

𝑇𝑡𝐴2𝐵1
=   (5.1 + 4.5 + ⋯+ 4.5) = 19.7 

𝑇𝑡𝐴2𝐵2
=   (4.7 + 4.9 + ⋯+ 5) = 19.8 
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𝑇𝑡𝑇 =    𝑇𝑡𝐴1𝐵1
+ 𝑇𝑡𝐴1𝐵2

+ 𝑇𝑡𝐴2𝐵2
+ 𝑇𝑡𝐴2𝐵2

 = 78 

The second step is calculating of the Correction Factor: 

𝐶𝐹 =  
 (𝑇𝑡

𝑇
)2

(𝑟 𝑥 𝑡)
=  

(78)2

4 𝑥 4
=

(78)2

16
=

6084

16
= 380.25  

The third step is calculating of the Total Sum of Squares: 

𝑇𝑆𝑆 =

  ((5.4 + (5.3)2 + (5.1)2 + (4.7)2 +  (4.6)2 + (5.6)2 … . . +(5)2) – 380.25 = 3.63  

The fourth step is calculating of the Treatment Sum of Squares: 

𝑇𝑟𝑡𝑆𝑆 =    
(𝑇𝑡𝐴1𝐵1

)2 + (𝑇𝑡𝐴1𝐵2
)2 + (𝑇𝑡𝐴2𝐵2

)2 + (𝑇𝑡𝐴2𝐵2
)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
(18)2 + (20.5)2 + (19.7)2 + (19.8)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
1524.38

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 = 381.10 − 380.25 = 0.85  

The fifth step is calculating of the Factor “A” Sum of Squares (ASS): 

𝐴 =  𝐴1 + 𝐴2 

𝐴1 = 18 + 20.5 = 38.5 

𝐴2 = 19.7 + 19.8 = 39.5 

𝐴𝑆𝑆 =   (
(𝐴1)2 + (𝐴2)2  

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐴𝑆𝑆 =   (
(38.5)2 + (39.5)2 

4 𝑥 2
) −  380.25  

𝐴𝑆𝑆 =   (
1482.25 + 1560.25 

8
) −  380.25 

𝐴𝑆𝑆 =   (
3042.5

8
) −  380.25 
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𝐴𝑆𝑆 =   380.31 −  380.25 = 0.063 

The sixth step is calculating of the Factor “B” Sum of Squares (BSS): 

𝐵 =  𝐵1 + 𝐵2  

𝐵1 = 18 + 19.7 = 37.7 

𝐵2 = 20.5 + 19.8 = 40.3 

𝐵𝑆𝑆 =   (
(𝐵1)2 + (𝐵2)2 

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐵𝑆𝑆 =   (
(37.7)2 + (40.3)2 

4 𝑥 2
) −  380.25  

𝐵𝑆𝑆 =   (
1421.29 + 1624.09 

8
) −  380.25 

𝐵𝑆𝑆 =   (
3045.38

8
) −  380.25 

𝐵𝑆𝑆 =   380.67 −  380.25 = 0.42 

The seventh step is calculating of the interaction between “A x B” Sum of 

Squares (ABSS): 

𝐴𝐵𝑆𝑆 = 𝑇𝑟𝑡𝑆𝑆 − (𝐴𝑆𝑆 + 𝐵𝑆𝑆)  

𝐴𝐵𝑆𝑆 = 0.85 − (0.063 + 0.42) 

𝐴𝐵𝑆𝑆 = 0.85 − 0.48 = 0.37  

The eighth step is calculating of the Error Sum of Squares (ESS): 

𝐸𝑆𝑆 = 𝑇𝑆𝑆 − 𝑇𝑟𝑡𝑆𝑆 =  3.63 − 0.85 = 2.78  

TtT=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of 

Squares, BSS=Factor “B” Sum of Squares, TrtSS=Treatment Sum of Squares, 

ABSS=Interaction between Factors “A x B” Sum of Squares, ESS=Error Sum 

of Squares, CF=Correction Factor, n = number of levels of factors, r = number 

of replication. 
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The ninth step looking up the F-critical table to the F-critical values: 

In looking for the critical value, the degree of the variable of the variable 

whose critical value is being read from the table is located on the outer most 

row and matched with the error degree of freedom on the outer most column on 

the left of the table. Following the given procedure, the following readings 

would be obtained from the 5% and 1% F-critical table: 

Treatment: F crit at df 3, 9 for 5% = 3.86; F crit at df 3, 9 for 1% = 6.99 

Factor A: F crit at df 1, 9 for 5% = 5.12; F crit at df 1, 9 for 1% = 10.56 

Factor B: F crit at df 1, 9 for 5% = 5.12; F crit at df 1, 9 for 1% = 10.56 

Interaction (A x B): F crit at df 1, 9 for 5% = 5.12; F crit at df 1, 9 for  

1% = 10.56. 

The tenth step is completing the ANOVA table: 

ANOVA TABLE  

Sources of Variation df SS MS Fcal. Fcrit. (5%) Fcrit (1%) 

Treatment  4 - 1= 3 0.85 0.28 0.92 3.86 6.99 

Factor A 2 - 1 = 1 0.063 0.06 0.20 5.12 10.56 

Factor B 2 - 1 = 1 0.42 0.42 1.36 5.12 10.56 

Interaction (A x B) 2 – 1 =1 0.37 0.37 1.20 5.12 10.56 

Error 15 – 6 = 9 2.78 0.31    

Total 16 – 1=15 3.63     

The eleventh step is making the decision or conclusion: 

Decision on Treatment  

𝐹𝑐𝑎𝑙  0.92 < 3.86, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 9  

𝐹𝑐𝑎𝑙   0.92 < 6.99, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 9  
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Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be 

concluded that there are no significant differences between the various 

treatments and then fail to reject the null hypothesis. 

Decision of Factor A 

𝐹𝑐𝑎𝑙  0.20 < 5.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 9  

𝐹𝑐𝑎𝑙   0.20 < 10.56, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 9  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor A. 

Decision of Factor B 

𝐹𝑐𝑎𝑙  1.36 < 5.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 9  

𝐹𝑐𝑎𝑙   1.36 < 10.56, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 9  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor B. 

Decision on the interactions (A x B) 

𝐹𝑐𝑎𝑙  1.20 < 5.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 9  

𝐹𝑐𝑎𝑙   1.20 < 10.56, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 9  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two 

levels of factor A do not vary significantly at the two levels of B when applied 

together. 

5.3  RCBD 

With regards to RCBD, the researcher can study the time it takes for the same 

quantity of milk from cow (A1) and (A2) to ferment into yoghurt under two 
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temperature conditions B1 and B2 blocked under the mode of storage: block 

1( fridge), block 2 (air condition) and block 3 (normal room condition). 

 A1 A2 

BLK B1 B2 B1 B2 

1 5.4 5.3 5.1 4.7 

2 4.6 5.6 4.5 4.9 

3 4.1 4.8 5.6 5.2 

4 3.9 4.8 4.5 5.0 

The first step in the analysis is to put forth the hypothesis: 

For RCBD the following hypotheses can be put forth: 

Ho: µBLK1 = µBLK2 = µBLK3 = µBLK4  

H1: µBLK1 ≠ µBLK2 = µBLK3 = µBLK4  

Ho: All blocks have equal treatment means 

HA: At least one block‟s treatment means differ from the others  

Ho: µA1B1 = µA1B2 = µA2B2 = µA2B2  

H1: µA1B1 ≠ µA1B2 = µA2B2 = µA2B2  

Ho: All the means of the treatments are equal 

HA: At least one of the means of the treatments is different 

Ho: µA1 = µA2  

H1: µA1 ≠ µA2  

Ho: The means of the 2 levels of A are equal 
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HA: The means of the 2 levels of A are unequal 

Ho: µB1 = µB2  

H1: µB1 ≠ µB2  

Ho: The means of the 2 levels of B are equal 

HA: The means of the 2 levels of B are unequal 

Ho: µA x B = µA x B 

H1: µA x B ≠ µA x B 

Ho: The effects of the interaction of two factors at the 2 levels are the same 

HA: The effects of the interaction of two factors at the 2 levels are different 

 
A1 A2 

 
BLK B1 B2 B1 B2 

 
1 5.4 5.3 5.1 4.7 20.5 

2 4.6 5.6 4.5 4.9 19.6 

3 4.1 4.8 5.6 5.2 19.7 

4 3.9 4.8 4.5 5 18.2 

 
18 20.5 19.7 19.8 78 

𝑇𝑡𝐴1𝐵1
=   (5.4 + 4.6 + ⋯+ 3.9) = 18  

𝑇𝑡𝐴1𝐵2
=   (5.3 + 5.6 + ⋯+ 4.8) = 20.5 

𝑇𝑡𝐴2𝐵1
=   (5.1 + 4.5 + ⋯+ 4.5) = 19.7 

𝑇𝑡𝐴2𝐵2
=   (4.7 + 4.9 + ⋯+ 5) = 19.8 

𝑇𝑡𝑇 =    𝑇𝑡𝐴1𝐵1
+ 𝑇𝑡𝐴1𝐵2

+ 𝑇𝑡𝐴2𝐵2
+ 𝑇𝑡𝐴2𝐵2

 = 78 
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The second step is calculating of the Correction Factor: 

𝐶𝐹 =  
 (𝑇𝑡

𝑇
)2

 𝑡
=
 (𝑇𝑡

𝑇
)2

4 𝑥 2 𝑥 2
=  

(78)2

4 𝑥 4
=

(78)2

16
=

6084

16
= 380.25  

where t=number of blocks x 2 levels of A x 2 levels of B=4 x 2 x 2 

The third step is calculating of the Total Sum of Squares: 

𝑇𝑆𝑆 =

  ((5.4 + (5.3)2 + (5.1)2 + (4.7)2 +  (4.6)2 + (5.6)2 … . . +(5)2) – 380.25 = 3.63  

The fourth step is calculating of the Treatment Sum of Squares: 

𝑇𝑟𝑡𝑆𝑆 =    
(𝑇𝑡𝐴1𝐵1

)2 + (𝑇𝑡𝐴1𝐵2
)2 + (𝑇𝑡𝐴2𝐵2

)2 + (𝑇𝑡𝐴2𝐵2
)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
(18)2 + (20.5)2 + (19.7)2 + (19.8)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
1524.38

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 = 381.10 − 380.25 = 0.85  

The fifth step is calculating of the Factor “A” Sum of Squares (ASS): 

𝐴 =  𝐴1 + 𝐴2 

𝐴1 = 18 + 20.5 = 38.5 

𝐴2 = 19.7 + 19.8 = 39.5 

𝐴𝑆𝑆 =   (
(𝐴1)2 + (𝐴2)2  

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐴𝑆𝑆 =   (
(38.5)2 + (39.5)2 

4 𝑥 2
) −  380.25  

𝐴𝑆𝑆 =   (
1482.25 + 1560.25 

8
) −  380.25 

𝐴𝑆𝑆 =   (
3042.5

8
) −  380.25 
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𝐴𝑆𝑆 =   380.31 −  380.25 = 0.063 

The sixth step is calculating of the Factor “A” Sum of Squares (ASS): 

𝐴 =  𝐴1 + 𝐴2 

𝐴1 = 18 + 20.5 = 38.5 

𝐴2 = 19.7 + 19.8 = 39.5 

𝐴𝑆𝑆 =   (
(𝐴1)2 + (𝐴2)2  

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐴𝑆𝑆 =   (
(38.5)2 + (39.5)2 

4 𝑥 2
) −  380.25  

𝐴𝑆𝑆 =   (
1482.25 + 1560.25 

8
) −  380.25 

𝐴𝑆𝑆 =   (
3042.5

8
) −  380.25 

𝐴𝑆𝑆 =   380.31 −  380.25 = 0.063 

The seventh step is calculating of the Factor “B” Sum of Squares (BSS): 

𝐵 =  𝐵1 + 𝐵2  

𝐵1 = 18 + 19.7 = 37.7 

𝐵2 = 20.5 + 19.8 = 40.3 

𝐵𝑆𝑆 =   (
(𝐵1)2 + (𝐵2)2 

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐵𝑆𝑆 =   (
(37.7)2 + (40.3)2 

4 𝑥 2
) −  380.25  

𝐵𝑆𝑆 =   (
1421.29 + 1624.09 

8
) −  380.25 

𝐵𝑆𝑆 =   (
3045.38

8
) −  380.25 

𝐵𝑆𝑆 =   380.67 −  380.25 = 0.42 
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The eighth step is calculating the Block Sum of Squares (BLKSS): 

𝐵𝐿𝐾𝑆𝑆 =   (
(𝐵𝐿𝐾1𝑇 )2 +(𝐵𝐿𝐾2𝑇)2+(𝐵𝐿𝐾3𝑇 )2+(𝐵𝐿𝐾4𝑇 )2

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑏𝑙𝑜𝑐𝑘𝑠
) − 𝐶𝐹  

𝐵𝐿𝐾𝑆𝑆 =    
(20.5)2+(19.6)2+(19.7)2+(18.2)2

4
 – 380.25  

𝐵𝐿𝐾𝑆𝑆 =    
(420.25)+(384.16)+(388.09)+(331.24)

4
 – 380.25  

𝐵𝐿𝐾𝑆𝑆 =    
(1523 .74)

4
 – 380.25  

𝐵𝐿𝐾𝑆𝑆 =   380.94– 380.25 = 0.69   

The ninth step is calculating of the interaction between “A x B” Sum of 

Squares (ABSS): 

𝐴𝐵𝑆𝑆 = 𝑇𝑟𝑡𝑆𝑆 − (𝐴𝑆𝑆 + 𝐵𝑆𝑆)  

𝐴𝐵𝑆𝑆 = 0.85 − (0.063 + 0.42) 

𝐴𝐵𝑆𝑆 = 0.85 − 0.48 = 0.37  

The tenth step is calculating of the Error Sum of Squares (ESS): 

𝐸𝑆𝑆 = 𝑇𝑆𝑆 −  𝐵𝐿𝐾𝑆𝑆 + 𝑇𝑟𝑡𝑆𝑆  

𝐸𝑆𝑆 =  3.63 −  0.85 + 0.69  

𝐸𝑆𝑆 =  3.63 − 1.54 =  2.09 

TtT=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of 

Squares, BSS=Factor “B” Su m of Squares, TrtSS=Treatment Sum of Squares, 

BLKSS=Block Sum of Squares, ABSS=Interaction between Factors “A x B” 

Sum of Squares, ESS=Error Sum of Squares, CF=Correction Factor, 

n=number levels of factors, r = number of replication. 

The eleventh step looking up the f-critical table to the f- critical values: 

Block: f crit at df 3, 6 for 5% = 4.76; f crit at df 3, 6 for 1% = 9.78 
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Treatment: F crit at df 3, 6 for 5% = 4.76; F crit at df 3, 6 for 1% = 9.78 

Factor A: F crit at df 1, 6 for 5% = 5.99; F crit at df 1, 6 for 1% = 13.75 

Factor B: F crit at df 1, 6 for 5% = 5.99; F crit at df 1, 6 for 1% = 13.75 

Interaction (A x B): F crit at df 1, 6 for 5% = 5.99; F crit at df 1, 6 for  

1% = 13.75. 

The twelfth step is completing the ANOVA table: 

ANOVA TABLE 
 

Sources of Variation df SS MS Fcal. Fcrit. (5%) Fcrit (1%) 

Block 4 – 1= 3 0.69 0.23 0.66 4.76 9.78 

Treatment 4 - 1= 3 0.85 0.28 0.81 4.76 9.78 

Factor A 2 - 1 = 1 0.063 0.06 0.18 5.99 13.75 

Factor B 2 - 1 = 1 0.42 0.42 1.21 5.99 13.75 

Interaction (A x B) 2 – 1 =1 0.37 0.37 1.06 5.99 13.75 

Error 15 – 9 = 6 2.09 0.35 
   

Total 16 - 1=15 3.63 
    

The thirteenth step is making the decision or conclusion: 

Decision on Block 

𝐹𝑐𝑎𝑙  0.66 < 4.76, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 6  

𝐹𝑐𝑎𝑙   0.66 < 9.78, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 6  

The F cal < F crit for the block at both 1% and 5% levels of significance, 

hence the researcher must fail to reject the null hypothesis for the block and 

conclude that there is no significant difference between the blocks. It there for 

suggests that there is no justification for blocking and the RCBD is therefore not 

the appropriate design for analysis of this experiment. 
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Decision on Treatment 

𝐹𝑐𝑎𝑙  0.81 < 4.76, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 6  

𝐹𝑐𝑎𝑙   0.81 < 9.78, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 6  

Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be 

concluded that there are no significant differences between the various 

treatments and then fail to reject the null hypothesis. 

Decision of Factor A 

𝐹𝑐𝑎𝑙  0.18 < 5.99, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 6  

𝐹𝑐𝑎𝑙   0.18 < 13.75, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 6 

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor A. 

Decision of Factor B 

𝐹𝑐𝑎𝑙  1.21 < 5.99, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 6  

𝐹𝑐𝑎𝑙   1.21 < 13.75, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 6  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor B. 

Decision on the interactions (A x B) 

𝐹𝑐𝑎𝑙  1.06 < 5.99, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 6 

𝐹𝑐𝑎𝑙   1.06 < 13.75, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 6  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two 

levels of factor A do not vary significantly at the two levels of B when applied 

together. 
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5.4  LSD 

For the LSD, the same experiment can be used as in the case of CRD and 

RCBD, but this time around there is no replication and blocking as done 

respectively under the two mentioned designs. 

  A1 A2 

  B1 B2 B1 B2 

A1 
B1 5.4 5.3 5.1 4.7 

B2 4.6 5.6 4.5 4.9 

A2 
B1 4.1 4.8 5.6 5.2 

B2 3.9 4.8 4.5 5.0 

The first step in the analysis is to put forth the hypothesis: 

The following hypotheses can be stated for the LSD:  

Ho: µCOL1 = µCOL2 = µCOL3 = µCOL4  

H1: µCOL1 ≠ µCOL2 = µCOL3 = µCOL4  

Ho: All columns have equal treatment means 

HA: At least one column‟s treatment means differ from the others  

Ho: µROW1 = µROW2 = µROW3 = µROW4  

H1: µROW1 ≠ µROW2 = µROW3 = µROW4  

Ho: All rows have equal treatment means 

HA: At least one row‟s treatment means differ from the others  

Ho: µA1B1 = µA1B2 = µA2B2 = µA2B2  

H1: µA1B1 ≠ µA1B2 = µA2B2 = µA2B2  
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Ho: All the means of the treatments are equal 

HA: At least one of the means of the treatments is different 

Ho: µA1 = µA2  

H1: µA1 ≠ µA2  

Ho: The means of the 2 levels of A are equal 

HA: The means of the 2 levels of A are unequal 

Ho: µB1 = µB2  

H1: µB1 ≠ µB2  

Ho: The means of the 2 levels of B are equal 

HA: The means of the 2 levels of B are unequal 

Ho: µA x B = µA x B 

H1: µA x B ≠ µA x B 

Ho: The effects of the interaction of two factors at the 2 levels are the same 

HA: The effects of the interaction of two factors at the 2 levels are different 

  
A1 A2  

  
B1 B2 B1 B2  

A1 
B1 5.4 5.3 5.1 4.7 20.5 

B2 4.6 5.6 4.5 4.9 19.6 

A2 
B1 4.1 4.8 5.6 5.2 19.7 

B2 3.9 4.8 4.5 5 18.2 

  
18 20.5 19.7 19.8 78 
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The second step is calculating of the Correction Factor: 

𝐶𝐹 =  
 (𝑇𝑡

𝑇
)2

 𝑡
=
 (𝑇𝑡

𝑇
)2

4 𝑥 2 𝑥 2
=  

(78)2

4 𝑥 4
=

(78)2

16
=

6084

16
= 380.25  

where t=number of blocks x 2 levels of A x 2 levels of B=4 x 2 x 2 

The third step is calculating of the Total Sum of Squares: 

𝑇𝑆𝑆 =

  ((5.4 + (5.3)2 + (5.1)2 + (4.7)2 +  (4.6)2 + (5.6)2 … . . +(5)2) – 380.25 = 3.63  

The fourth step is calculating of the Treatment Sum of Squares: 

𝑇𝑟𝑡𝑆𝑆 =    
(𝑇𝑡𝐴1𝐵1

)2 + (𝑇𝑡𝐴1𝐵2
)2 + (𝑇𝑡𝐴2𝐵2

)2 + (𝑇𝑡𝐴2𝐵2
)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
(18)2 + (20.5)2 + (19.7)2 + (19.8)2

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 =    
1524.38

4
 – 380.25 = 0.85 

𝑇𝑟𝑡𝑆𝑆 = 381.10 − 380.25 = 0.85  

The fifth step is calculating of the Column Sum of Squares (CSS): 

𝐶𝑆𝑆 =    
(𝐶𝑂𝐿1𝑇)2 + (𝐶𝑂𝐿2𝑇)2 + (𝐶𝑂𝐿3𝑇)2 + (𝐶𝑂𝐿4𝑇)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
 – 𝐶𝐹 

𝐶𝑆𝑆 =    
(18)2 + (20.5)2 + (19.7)2 + (19.8)2

4
 – 380.25 

𝐶𝑆𝑆 =    
(324) + (420.25) + (388.09) + (392.04)

4
 – 380.25 

𝐶𝑆𝑆 =   381.10– 380.25 = 0.85 

The sixth step is calculating of the Row Sum of Squares (RSS): 

𝑅𝑆𝑆 =    
(𝑅𝑂𝑊1𝑇)2 + (𝑅𝑂𝑊2𝑇)2 + (𝑅𝑂𝑊3𝑇)2 + (𝑅𝑂𝑊4𝑇)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠
 –𝐶𝐹 
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𝑅𝑆𝑆 =    
(20.5)2 + (19.6)2 + (19.7)2 + (18.2)2

4
 – 380.25 

𝑅𝑆𝑆 =    
(420.25) + (384.16) + (388.09) + (331.24)

4
 – 380.25 

𝑅𝑆𝑆 =   380.94– 380.25 = 0.69 

The seventh step is calculating of the Factor “A” Sum of Squares (ASS): 

𝐴 =  𝐴1 + 𝐴2 

𝐴1 = 18 + 20.5 = 38.5 

𝐴2 = 19.7 + 19.8 = 39.5 

𝐴𝑆𝑆 =   (
(𝐴1)2 + (𝐴2)2  

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐴𝑆𝑆 =   (
(38.5)2 + (39.5)2 

4 𝑥 2
) −  380.25  

𝐴𝑆𝑆 =   (
1482.25 + 1560.25 

8
) −  380.25 

𝐴𝑆𝑆 =   (
3042.5

8
) −  380.25 

𝐴𝑆𝑆 =   380.31 −  380.25 = 0.063 

The eighth step is calculating of the Factor “A” Sum of Squares (ASS): 

𝐴 =  𝐴1 + 𝐴2 

𝐴1 = 18 + 20.5 = 38.5 

𝐴2 = 19.7 + 19.8 = 39.5 

𝐴𝑆𝑆 =   (
(𝐴1)2 + (𝐴2)2  

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐴𝑆𝑆 =   (
(38.5)2 + (39.5)2 

4 𝑥 2
) −  380.25  

𝐴𝑆𝑆 =   (
1482.25 + 1560.25 

8
) −  380.25 
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𝐴𝑆𝑆 =   
3042.5

8
−  380.25 

𝐴𝑆𝑆 =   380.31 −  380.25 = 0.063 

The ninth step is calculating of the Factor “B” Sum of Squares (BSS): 

𝐵 =  𝐵1 + 𝐵2  

𝐵1 = 18 + 19.7 = 37.7 

𝐵2 = 20.5 + 19.8 = 40.3 

𝐵𝑆𝑆 =   (
(𝐵1)2 + (𝐵2)2 

𝑟 𝑥 𝑛
) −  𝐶𝐹 

𝐵𝑆𝑆 =   (
(37.7)2 + (40.3)2 

4 𝑥 2
) −  380.25  

𝐵𝑆𝑆 =   (
1421.29 + 1624.09 

8
) −  380.25 

𝐵𝑆𝑆 =   (
3045.38

8
) −  380.25 

𝐵𝑆𝑆 =   380.67 −  380.25 = 0.42 

The tenth step is calculating of the interaction between “A x B” Sum of 

Squares (ABSS): 

𝐴𝐵𝑆𝑆 = 𝑇𝑟𝑡𝑆𝑆 − (𝐴𝑆𝑆 + 𝐵𝑆𝑆)  

𝐴𝐵𝑆𝑆 = 0.85 − (0.063 + 0.42) 

𝐴𝐵𝑆𝑆 = 0.85 − 0.48 = 0.37  

The eleventh step is calculating of the Error Sum of Squares (ESS): 

𝐸𝑆𝑆 = 𝑇𝑆𝑆 −  𝑇𝑟𝑡𝑆𝑆 + 𝑅𝑆𝑆 + 𝐶𝑆𝑆  

𝐸𝑆𝑆 =  3.63 −  0.85 + 0.69 + 0.85  

𝐸𝑆𝑆 =  3.63 − 2.39 =  1.24 



Chapter 5  Multifactorial Design 

 

http://www.sciencepublishinggroup.com 127 

TtT=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of 

Squares, BSS=Factor “B” Sum of Squares, TrtSS=Treatment Sum of Squares, 

BLKSS=Block Sum of Squares, ABSS=Interaction between Factors “A x B” 

Sum of Squares, ESS=Error Sum of Squares, CF=Correction Factor, 

n=number levels of factors, r = number of replication. 

The twelfth step looking up the F-critical table to the F-critical values: 

Column: F crit at df 3, 3 for 5% =9.28; F crit at df 3, 3 for 1% = 29.46 

Row: F crit at df 3, 3 for 5% = 9.28; F crit at df 3, 3 for 1% = 29.46 

Treatment: F crit at df 3, 3 for 5% = 9.28; F crit at df 3, 3 for 1% = 29.46 

Factor A: F crit at df 1, 3 for 5% = 10.13; F crit at df 1, 3 for 1% = 34.12 

Factor B: F crit at df 1, 3 for 5% = 10.13; F crit at df 1, 3 for 1% = 34.12 

Interaction (A x B): F crit at df 1, 3 for 5% = 10.13; F crit at df 1, 3 for  

1% = 34.12. 

The thirteenth step is completing the ANOVA table: 

Sources of Variation df SS MS Fcal. Fcrit. (5%) Fcrit (1%) 

Column 4 – 1= 3 0.69 0.23 0.56 9.28 29.46 

Row 4 -1 = 3 0.85 0.28 0.69 9.28 29.46 

Treatment 4 - 1= 3 0.85 0.28 0.69 9.28 29.46 

Factor A 2 - 1 = 1 0.063 0.06 0.15 10.13 34.12 

Factor B 2 - 1 = 1 0.42 0.42 1.02 10.13 34.12 

Interaction (A x B) 2 – 1 =1 0.37 0.37 0.90 10.13 34.12 

Error 15 – 12 = 3 1.24 0.41 
   

Total 16 -1=15 3.63 
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The fourteenth step is making the decision or conclusion: 

Decision on Column 

𝐹𝑐𝑎𝑙  0.56 < 9.28, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 3  

𝐹𝑐𝑎𝑙   0.56 < 29.46, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 3 

The F cal < F crit for the block at both 1% and 5% levels of significance, 

hence the researcher must fail to reject the null hypothesis for the column and 

conclude that there is no significance difference between the columns. 

Decision on Row 

𝐹𝑐𝑎𝑙  0.69 < 9.28, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 3  

𝐹𝑐𝑎𝑙   0.69 < 29.46, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 3  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be 

concluded that there are no significant differences between rows hence the 

researcher must fail to reject the null hypothesis for the row. 

Once it has been established that there are no significant differences between 

the columns and rows respectively in the design, one can therefore conclude 

that there is no justification for the use of LSD, it is thus inappropriate for 

analysis of the experiment in question. 

Decision on Treatment  

𝐹𝑐𝑎𝑙  0.69 < 9.28, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 3, 3  

𝐹𝑐𝑎𝑙   0.69 < 29.46, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 3, 3  

Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be 

concluded that there are no significant differences between the various 

treatments and then fail to reject the null hypothesis for the treatment. 
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Decision of Factor A 

𝐹𝑐𝑎𝑙  0.15 < 10.13, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 3  

𝐹𝑐𝑎𝑙   0.15 < 34.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 3 

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor A. 

Decision of Factor B 

𝐹𝑐𝑎𝑙  1.02 < 10.13, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 3 

𝐹𝑐𝑎𝑙   1.02 < 34.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 3  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there 

are no significant differences between the two different levels of factor B. 

Decision on the interactions (A x B) 

𝐹𝑐𝑎𝑙  0.90 < 10.13, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  5% 𝑎𝑡 1, 3 

𝐹𝑐𝑎𝑙   0.90 < 34.12, 𝐹𝑐𝑟𝑖𝑡. 𝑜𝑟 𝑡𝑎𝑏.  1% 𝑎𝑡 1, 6  

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two 

levels of factor A do not vary significantly at the two levels of B when applied 

together. 
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Abstract 

Spilt plot experimental design analysis is quite complicated because it involves 

the analysis of the main plot and then the sub plot. Due to its complicated nature, 

analysis of such a design is quite difficult for the understanding of students and 

most researchers. It is the appropriate design used for the analysis of a two factor 

experiment where all the treatments or factors cannot be contained in complete 

block design. This chapter explains how this design can be used and handled when 

analysing experiments. 
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6.1  Introduction 

Every experimental design has its peculiar usefulness and cannot be relegated 

to the background when the situation calls for it. Whenever a researcher or an 

experimenter is faced handling two factor experiment which cannot be contained 

in a complete block design, then the split plot designs are used. The split plot 

design is thus suited for two factor experiment where the main factor is assigned 

to the main plot and the second factor assigned to the subplot which emanates 

from the division of the main plot. Thus the main plot becomes a block on its own 

and has subplot which holds treatment. The main factor is the factor which the 

researcher is very familiar with its characteristics. In a split plot design, the 

precision of measurement of effects of the main plot factors is sacrificed to 

improve that of the sub-plot factor. The relative size of the main effects and the 

precision of measurement of effects should not be the same for both factors – 

main factor and the sub factor. Assignment of factors to the main plot and the 

sub- plot is important and the guidelines to make this choice or assign the factors 

to the plot is determined by the relative size of the main effects and the precision 

of its measurement in relation to the researcher or experimenter‟s interest. As 

such it is often referred to as an experiment of convenience. 

When the experimenter is considering greater precision for one factor as 

opposed to the other, the factor that requires a greater precision is assigned to 

the sub-plot and that with less precision assigned to the main plot. Taking for 

example a machine designer and a chemist considering a split plot design that 

involves the sizes of a machine type (S) and the chemical composition of food 

processed using these machines (C). The machine designer and the chemist are 

likely to assign these two factors as follows as per the precision required from 

each of on the measurement of the factors: 
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Machine Designer 

Factors Factor type Precision required Plot type the factor must be assigned 

Sizes of machines Sub factor More precision sub plot - 

Chemical composition 

of processed food 
Main factor Less precision 

Main factor to be assigned to  

main plot 

 

Chemist 

Factors Factor type Precision required Plot type the factor must be assigned 

Chemical composition 

of processed food 
Sub factor More precision sub plot - 

Sizes of machines Main factor Less precision 
Main factor to be assigned to  

main plot 

As regard the relative size of the main effects, the experimenter assigns 

factors to the main and subplot according to the relative size of their expected 

effects. For instance, if the main effect of one factor is larger and easier to 

detect than the other it is assigned to the main plot and the other assigned to the 

sub-plot. Taking for instance in an experiment to test the effects of different 

methods of processing food (P) and storing food (A) on nutrient loss; the factors 

in this experiment can be assigned in the design based on the relative size of 

their effects as shown below: 

Assignment of factors based on the relative size of their effects 

Factors Factor type Size of effects factors Plot type the factor must be assigned 

Food processing 

methods (P) 
Main factor Larger effects Main plot 

Food storage 

methods (A) 
Sub-factor Lesser effects Sub-plot 

Another important factor in assigning factors is the management practices to 

be adopted in handling the factors under the design. For instance if the 

researcher is experimenting on the effect of a particular food item on the growth 

in terms of height on humans above twenty (20) year old (H) and humans below 
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one (1) to twenty (20) years (G), since it has been established that humans cease 

to grow in height at age 21, those who are above twenty (H) needs to be 

assigned to the sub-plot while those between 1 and 20 be assigned to the main 

plot to minimize the effect of the food to those who already have the potential 

or capable of growing in height. This last factor applies to agricultural 

experiments. However with other industrial experiments, there are the hard-to-

change factors which are assigned to the main plots and the easy-to-change 

factors which are assigned to the sub-plots. For instance assuming a sapele 

board is to be subjected to three different treatments (A, B, C) and then painted 

with three different paints (X, Y, Z) to ascertain its acceptability by users. These 

can be achieved in two ways: the first is to treat each sapele board in the three 

different conditions, divide each of them into three different portions and then 

paint them with the three selected paints; the other way is to divide each of the 

sapele board into three portions first, treat each of them and then paint them. 

Therefore in a split plot experimental designs, the levels of the main plot 

factor multiplied by the levels of the sub-plot factor gives the number of 

treatments. It presupposes that if one is considering three levels of H (H1, H2, H3) 

as sub-plot factor and G (G1, G2, G3) as the main plot factor, then the number of 

treatments equals nine (9), 3 levels of H x 3 levels of G. if these are replicated 

for four (4) times, then there will be 36 treatments or observable units - 4 

replicates x 3 levels of H x 3 levels of G. 

To explain the step-by-step procedures used to analyse the split plot design, 

we can consider a hypothetical situation of designing an experiment involving 

three machines (M1, M2, M3) made out of different materials such stainless stain, 

Aluminium and Iron respectively and their respective wear in terms of particles 

size and quantity (W1, W2, W3) into the flour produced when used in milling 

the same quantity of maize. 
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In this particular case the main plot factors would be the machine types (M1, 

M2, M3) and the subplot factors would be the different quantity of wear (W1, W2, 

W3). Thus the split-plot design is shown below: 

REPLICATION I 

M1 M2 M3 

 

W1 

W2 

W3 

 

W1 

W2 

W3 

 

W1 

W2 

W3 

 

REPLICATION II 

M2 M3 M1 

 

W2 

W3 

W1 

 

W2 

W3 

W1 

 

W2 

W3 

W1 

 

REPLICATION III 

M3 M1 M2 

 

W3 

W1 

W2 

 

W3 

W1 

W2 

 

W3 

W1 

W2 

In this experiment, the first replication shows how the split plot design looks 

like and randomization can be achieved as done in the other replications II and 

III. The design and the replications show how the main plots factors and the 

subplot factors would be arranged in the experiment. However when the 

experiment is conducted, the data obtained can be represented as follows: 
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REPLICATION I 

M1 M2 M3 

 

1.3 

1.1 

1.5 

 

1.9 

2.1 

1.6 

 

2.2 

1.5 

1.4 

 

REPLICATION II 

M2 M3 M1 

 

1.2 

1.4 

1.3 

 

2.2 

1.5 

1.4 

 

1.9 

2.1 

1.6 

 

REPLICATION III 

M3 M1 M2 

 

1.9 

2.1 

1.6 

 

2.2 

1.5 

1.4 

 

2.5 

1.6 

2.1 

In order to do the calculation to complete the ANOVA table, the data 

obtained from the experiment is summarized and shown in the table below:  

 W1 W2 W3 

 

REPLICATION I 

M1 1.3 2.1 1.5 

M2 1.9 2.1 1.6 

M3 2.2 1.5 1.4 

 

REPLICATION II 

M2 1.3 1.2 1.4 

M3 1.4 2.2 1.5 

M1 1.6 1.9 2.1 

 

REPLICATION III 

M3 2.1 1.6 1.9 

M1 1.5 1.4 2.2 

M2 1.6 2.1 2.5 



Chapter 6  Split Plot Experimental Design 

 

http://www.sciencepublishinggroup.com 139 

6.2  Analysis of the Split Plot Design 

For the analysis of the split plot design, one needs to understand that the size 

of the main plot is W times the size of the of the sub plot; the number of times 

the main plot treatment is tested is equal to the number of replications (r) used; 

there are three degrees of precision where the main plot factor is associated with 

the lowest degree of precision and the sub plot is associated with the highest 

degree of precision. 

In doing the analysis for the split plot, the whole plot and the sub plot 

analyses must be done. 

6.3  Whole Plot Analysis 

The main plot treatments M1, M2 and M3 within the blocks and handled as 

randomized complete block design. Once the main plot treatments are 

randomized as in the RCBD, no adjustment is required as regard the sum of 

squares for the main plot treatments (M). 

In other to do the analysis the following steps should be followed: 

 W1 W2 W3 

 

REPLICATION I 

M1 1.3 2.1 1.5 

M2 1.9 2.1 1.6 

M3 2.2 1.5 1.4 

 

REPLICATION II 

M2 1.3 1.2 1.4 

M3 1.4 2.2 1.5 

M1 1.6 1.9 2.1 

 

REPLICATION III 

M3 2.1 1.6 1.9 

M1 1.5 1.4 2.2 

M2 1.6 2.1 2.5 
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The first step is to calculate the replication total and the grand total. 

In other to do these calculations the data has to be arranged in the tables below: 

A cross tabulation of replication and machine type – main plot treatment (RM) 

 W1 W2 W3 

 

REPLICATION I 

M1 1.3 2.1 1.5 

M2 1.9 2.1 1.6 

M3 2.2 1.5 1.4 

 

REPLICATION II 

M2 1.3 1.2 1.4 

M3 1.4 2.2 1.5 

M1 1.6 1.9 2.1 

 

REPLICATION III 

M3 2.1 1.6 1.9 

M1 1.5 1.4 2.2 

M2 1.6 2.1 2.5 

Cross tabulation of Replication and Machine type (RM) 

 M1 M2 M3 Rep Totals 

REPLICATION I 4.9 5.6 5.1 15.6 

REPLICATION II 5.6 3.9 5.1 14.6 

REPLICATION III 5.1 6.2 5.6 16.9 

Machine type Totals 15.6 15.7 15.8  

Grand Total    47.1 

Calculating the Grand Total (GT) 

𝐺𝑇 =    4.9 + 5.6 + 5.1 + 5.6 + ⋯+ 5.6 = 47.1

𝑛=9

𝑖=1,𝑗=1

 

Calculating the Correction Factor (CF) 

𝐶𝐹 =  
(𝐺𝑇)2

𝑟𝑚𝑤
 

𝐶𝐹 =  
(47.1)2

3 𝑥 3 𝑥 3
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𝐶𝐹 =  
2218.41

27
 

𝐶𝐹 =  82.16 

where r=no. of replications, m=no. of levels of machine types, w=no. of 

levels of machine wears. 

At this point one must compute the sum of squares of the main plot and these 

are done and illustrated below: 

Calculating the Total Sum of Squares (TSS) 

𝑇𝑆𝑆 =   𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 −  𝐶𝐹  

𝑇𝑆𝑆 =   (𝑚1𝑤1

𝑛= 9

𝑖=1,𝑗=1,𝑘=1

𝑟1)2 + ……………+ (𝑚2𝑤3𝑟3)2 − 𝐶𝐹  

𝑇𝑆𝑆 =   [(1.3)2 + (2.1)2 + (1.5)2 + (2.2)2 + ⋯+  2.5)2 −  82.16  

𝑇𝑆𝑆 =   [1.69 + 4.41 + 2.25 + 4.84 + ⋯+ 6.25] − 𝐶𝐹 

𝑇𝑆𝑆 =  85.55 − 82.16 = 3.39 

𝑇𝑆𝑆 =  3.39 

 

Calculating the Replication Sum of Squares (RSS) 

𝑅𝑆𝑆 =  
[(𝑅1𝑇

)2 + (𝑅2𝑇
)2 + (𝑅3𝑇

)2] 

𝑚𝑤
−  𝐶𝐹 

𝑅𝑆𝑆 =  
[(15.6)2 + (14.6)2 + (16.9)2] 

3 𝑥 3
−  82.16  

𝑅𝑆𝑆 =  
[ 243.36 + 213.16 + 285.61] 

9
−  82.16 

𝑅𝑆𝑆 =  (
[ 742.13] 

9
−  82.16) 
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𝑅𝑆𝑆 = 82.46 −  82.16 

𝑅𝑆𝑆 = 0.30 

Calculating the Machine Type Sum of Squares (MSS). 

It should be noted here that the main plot factor is the machine type. 

𝑀𝑆𝑆 =  
[(𝑀1𝑇

)2 + (𝑀2𝑇
)2 + (𝑀3𝑇

)2] 

𝑟𝑤
−  𝐶𝐹 

𝑀𝑆𝑆 =  
[(15.6)2 + (15.7)2 + (15.8)2] 

3 𝑥 3
−  82.16  

𝑀𝑆𝑆 =  
[ 243.36 + 246.49 + 249.64] 

9
−  82.16 

𝑀𝑆𝑆 =  (
[ 739.49] 

9
−  82.16) 

𝑀𝑆𝑆 = 82.17 −  82.16 

𝑀𝑆𝑆 = 0.01 

Calculating the Replication and Machine Type Sum of Squares (RMSS). 

Note: one is expected to use the cross tabulation table for replication and 

machine type 

𝑅𝑀𝑆𝑆 =  
(𝑚1𝑟1)2 +  ……………+ (𝑚2𝑟3)2

𝑤

𝑛=9

𝑖=1,𝑗=1

−  𝐶𝐹 

𝑅𝑀𝑆𝑆 =  
[(4.9)2 + (5.6)2 + (5.1)2 + ⋯+ (5.6)2] 

𝑤
−  82.16 

𝑅𝑀𝑆𝑆 =  
[24.01 + 31.36 + 26.01 + ⋯+ 31.36] 

3
−  82.16  

𝑅𝑀𝑆𝑆 =  
[249.77 ] 

3
−  82.16 

𝑅𝑀𝑆𝑆 = 83.26 −  82.16) 

𝑅𝑀𝑆𝑆 = 1.10 
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Main plot Error Sum of Squares  MPESS = 𝑅𝑀𝑆𝑆 − 𝑅𝑆𝑆 −𝑀𝑆𝑆 

𝑀𝑃𝐸𝑆𝑆 =  𝑅𝑀𝑆𝑆 − 𝑅𝑆𝑆 − 𝑀𝑆𝑆 

𝑀𝑃𝐸𝑆𝑆 =  1.10 − 0.30 − 0.01  

𝑀𝑃𝐸𝑆𝑆 =  0.79 

6.4  Sub Plot Analysis 

This is where the sum of squares of the sub plot factors are computed and 

these have been illustrated as below: 

Cross tabulation of Machine type and machine wear (MW) 

 M1 M2 M3 W Totals 

W1 4.4 4.8 5.7 14.9 

W2 5.4 5.4 5.3 16.1 

W3 5.8 5.5 4.8 16.1 

Calculating the Machine Wear Sum of Squares (WSS) 

It should be noted that the machine wear is the sub plot factor for this 

particular experiment being considered for analysis. 

𝑊𝑆𝑆 =  
[(𝑊1𝑇

)2 + (𝑊2𝑇
)2 + (𝑊3𝑇

)2] 

𝑟𝑚
−  𝐶𝐹 

𝑊𝑆𝑆 =  
[(14.9)2 + (16.1)2 + (16.1)2] 

3 𝑥 3
−  82.16  

𝑊𝑆𝑆 =  
[ 222.01 + 259.21 + 259.21] 

9
−  82.16 

𝑊𝑆𝑆 =  (
[ 740.43] 

9
−  82.16) 

𝑊𝑆𝑆 = 82.27 −  82.16 

𝑊𝑆𝑆 = 0.11 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

144 http://www.sciencepublishinggroup.com 

Calculating the Sum of Squares of the interaction between Machine Type and 

Machine Wear 

(𝑀 𝑥𝑊)𝑆𝑆 =  
(𝑚1𝑤1)2 + ……………+ (𝑚3𝑤3)2

𝑟

𝑛=9

𝑖=1,𝑗=1

−  𝐶𝐹 

(𝑀𝑥𝑊)𝑆𝑆 =  
[(4.4)2 + (4.8)2 + (5.7)2 + ⋯+ (4.8)2] 

𝑟
−  82.16 

(𝑀𝑥𝑊)𝑆𝑆 =  
[19.36 + 23.04 + 32.49 + ⋯+ 23.04] 

3
−  82.16  

(𝑀𝑥𝑊)𝑆𝑆 =  
[248.23 ] 

3
−  82.16 

(𝑀𝑥𝑊)𝑆𝑆 = 82.74 −  82.16 

(𝑀𝑥𝑊)𝑆𝑆 = 0.58 

𝑆𝑢𝑏 𝑃𝑙𝑜𝑡 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝑆𝑃𝑆𝑆 = 𝑇𝑆𝑆 − 𝐴𝑙𝑙 𝑆𝑢𝑚𝑠 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  

 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑏 𝑃𝑙𝑜𝑡 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝐸𝑆𝑃𝑆𝑆 
= 𝑇𝑆𝑆 − (𝑅𝑆𝑆 + 𝑀𝑆𝑆 + 𝑅𝑀𝑆𝑆 + 𝑀𝑃𝐸𝑆𝑆 + 𝑊𝑆𝑆 + (𝑀𝑥𝑊)𝑆𝑆 

𝑆𝑃𝑆𝑆 = 3.39 − (0.30 + 0.01 + 1.10 + 0.79 + 0.11 + 0.58) 

𝐸𝑆𝑃𝑆𝑆 = 3.39 − 2.89 

𝑆𝑃𝑆𝑆 = 0.50 
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6.5  Completing the ANOVA Table 

Sources of 

Variation 
df 

Sum of 

Squares 

Mean Sum  

of Squares 
Fcal 

Fcrit 

(5%) 

Fcrit 

(1%) 

Replication `r -1 = 3 – 1 = 2 0.30 
0.30

2
= 0.15    

Main Plot factor 

(M) 
m -1 = 3-1 = 2 0.01 

0.01

2
=  0.005 

0.005

0.395
= 0.01   

Error (M) (r-1)(m-1) = 2 x 2 =4 0.79 
0.79

4
= 0.395    

Sub Plot factor 

(W) 
w -1 = 3 -1 =2 0.11 

0.11

2
=  0.055 

0.055

0.25
= 0.22   

Interaction 

between (M x 

W) 

(m-1)(w-1) = 2 x 2 =4 0.58 
0.58

4
=  0.29 

0.29

0.25
= 1.16   

Error (z) 
m(r-1)(w-1) = 3 x 2 x 2 

= 12 
0.50 

0.50

12
=  0.25    

Total rmw-1 = 27 -1 = 26      

Reading of the F-critical or tabulated values from the F-table at the various 

assigned levels of significance allowed. 

For the case being considered, 1% and 5% levels of significance would be used. 
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Sources of Variations Fcal Fcrit (5%) Fcrit (1%) 

Main Plot Factor (M) 
0.005

0.25
= 0.01 df(2,4) = 6.94 df(2,4) = 18.00 

Sub Plot Factor (W) 
0.055

0.25
= 0.22 df (2,12) = 3.89 df(2,12) = 6.93 

Interactions ( M x W) 
0.29

0.25
= 1.16 df (2,12) = 3.89 df(2,12) = 6.93 

*Note in reading the f tabulated value for the main plot factor, the degree of 

freedom of the main plot factor is used against the degree of freedom of the 

error (M). However for the subplot factor and the interactions their respective 

degrees of freedom are used against the degree of freedom of error (z). 

Taking the Decision and Making the Conclusion 

Main Plot Factor (Machine Type): 

𝐹𝑐𝑎𝑙 (0.01) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,4 @ 5% = 6.94  

𝐹𝑐𝑎𝑙 (0.01) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,4 @ 1% = 18.00  

Conclusion on Main Plot Factor (Machine Type):  
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There is no significance difference between the machine types used in the 

experiment at both levels of significance. This means the machine types have a 

similar effect. 

Subplot Factor (Wear Type): 

𝐹𝑐𝑎𝑙 (0.22) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,12 @ 5% = 3.89  

𝐹𝑐𝑎𝑙 (0.22) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,12 @ 1% = 6.93  

Conclusion on Subplot (Wear Type). 

There is no significant difference between the various wear types. Meaning 

the wear types did not differ statistically  

Interactions (M x W): 

𝐹𝑐𝑎𝑙 (1.16) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,12 @ 5% = 3.89  

𝐹𝑐𝑎𝑙 (1.16) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 2,12 @ 1% = 6.93  

Conclusion on Interactions (M x W). 

There exists no significance difference. Hence one can conclude that the 

interactions between the two did not differ statistically.  
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Abstract 

The strip plot design is one of the uncommon experimental designs and thus 

most researchers had little or no knowledge of it. Though it has semblance of the 

split plot design, it is used differently. This paper examines conditions or 

situations that necessitate the use of the strip plot designs and explains 

comprehensively with designed examples of experiments on how to handle such 

designs. The chapter examines the factor that is mainly used when greater 

precision is given to the interactions between the two factors. It also shows how 

the two factors are arranged in the design. 

Keywords 

Horizontal Strips, Vertical Strips, Interaction Strips, Design 
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7.1  Introduction 

The strip plot design is most uncommon and less used design. However its use 

becomes necessary when the experimenter or the researcher needs to handle 

certain experiments. It used for analysing two factor experiments in which the 

factors to be handled are so large that they cannot be accommodated in a split plot 

design or would bring about a condition of heterogeneity in terms of the factors 

being considered. For instance in a two factor (subplot factor and main factor) 

experiment which involves testing the effects of four (4) tillage methods - subplot 

factor; and four (4) soil types - main plot factor on productivity of crops. In the 

design of such an experiment since large space is involved, it cannot be 

accommodated in a split plot design because large land space is needed and this 

would bring about heterogeneity. As a result the appropriate design for such 

experiment would be the strip plot design. In the strip plot design, the factors are 

handled by arranging them in strips. The factors are arranged and placed in a 

horizontal strip, vertical strip and interaction strip. One factor is placed in the 

horizontal strip and the second factor in the vertical strip; and the interactions 

between the factors placed in the vertical and horizontal strips are observed in the 

interaction strip, which is diagonal to the vertical and the horizontal strips. 

While in the split plot designs, greater precision is given to the subplot 

factors while sacrificing that of the main plot factors; in strip plot designs, the 

precision for both the main plot factors and the subplot factors are sacrificed to 

give greater precision to only their interactions. Thus this design is only used 

when the experimenter needs to give greater precision to the interactions 

between the two factors being considered in an experiment. Usually in a strip 

plot design, the subplot factors are arranged by randomizing and placed within 

the horizontal strips while the main plot factors are placed in the vertical strips. 

The interactions between both factors are then seen or observed diagonally 
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between the spaces or field between the vertical and horizontal strips as in the 

diagrammatic illustration given below: 

REPLICATION 1 

B1 B1A1 B1A2 B1A3 B1A4 

B2 B2A1 B2A2 B2A3 B2A4 

B3 B3A1 B3A2 B3A3 B3A4 

B4 B4A1 B4A2 B4A3 B4A4 

 A1 A2 A3 A4 

 

REPLICATION 2 

B2 B2A2 B2A3 B2A4 B2A1 

B3 B3A2 B3A3 B3A4 B3A1 

B4 B4A2 B4A3 B4A4 B4A1 

B1 B1A2 B1A3 B1A4 B1A1 

 A2 A3 A4 A1 

 

REPLICATION 3 

B3 B3A3 B3A4 B3A1 B3A2 

B4 B4A3 B4A4 B4A1 B4A2 

B1 B1A3 B1A4 B1A1 B1A2 

B2 B2A3 B2A4 B2A1 B2A2 

 A3 A4 A1 A2 

For the purpose of illustrating and explaining the strip plot design, we 

proceed to design a strip plot experiment and learn how to analyze it. Assuming 

we are considering a strip plot experiment to study the effect on four (4) tillage 

methods on four (4) different soil types, we will have a similar design as given 

above, where the variables B are the sub plot factors arranged in the vertical 

strip and A, the main plot factors arranged the horizontal whereas the 

interaction between the subplot factor and the main plot factor. 

Thus in the experimental layout, the vertical strip must be divided into four to 

contain the four different levels of the main factor A; the horizontal strip must 
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also be divided into four to contain the four different levels of the second factor 

B. The interaction between the two factors A and B (A x B) is observed in the 

interaction strip. This is done for every replication. Therefore if three (3) 

replications are to be considered, then the arrangement is done three times. 

Analysis of this design is done in three-fold: analyzing the vertical strip, the 

horizontal strip and the interaction strip. The vertical analysis is done by first 

creating a cross table of the replication and the main factor which in this case is 

A. The analysis of the design involves computing the Sum of Squares (SS) due 

to the main factor (A); SS due replication; SS due to the interactions between 

the main factor (A) and replication (R) – A x R; and then the error SS (x). The 

horizontal strip analysis involves creating a cross table of the second factor and 

the replication and using it to compute the SS due to the second factor (B); SS 

due to the replications; SS due to the interaction between B x R; and the SS due 

to error (y). For the analysis of the interaction strip, the cross table of the main 

factor and the second factor is generated and then used in computing the SS due 

to the interaction of two factors (A x B). Thus the Total SS can be computed by 

considering every observation of the experiment while the error SS (z) can be 

obtained by subtracting all various variations from the Total SS variations. 

Now let us assume a researcher used strip plot design to investigate the effect 

of four tillage methods (A) and four different soil types (B) with the experiment 

replicated three (3) times and obtained the results as shown in the table below: 

REPLICATION 1 

B2 1.3 1.4 1.3 1.1 

B3 1.5 1.4 1.5 1.3 

B4 1.4 1.6 1.5 1.6 

B1 1.4 1.2 1.7 1.3 

 A2 A3 A4 A1 
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REPLICATION 2 

B1 1.3 1.4 1.4 2.3 

B2 1.4 1.5 1.5 1.3 

B3 1.5 1.3 1.3 1.4 

B4 1.8 1.3 1.4 1.4 

 A1 A2 A3 A4 

 

REPLICATION 3 

B2 2.4 1.6 1.3 2.1 

B3 1.6 2.0 1.5 2.0 

B1 2.4 1.6 1.4 1.9 

B4 1.4 1.5 1.7 1.8 

 A4 A3 A1 A2 

 

 A1 A2 A3 A4 

 

REPLICATION 1 

B2 1.1 1.3 1.4 1.3 

B3 1.3 1.5 1.4 1.5 

B4 1.6 1.4 1.6 1.5 

B1 1.3 1.4 1.2 1.7 

 

REPLICATION 2 

B1 1.3 1.4 1.4 2.3 

B2 1.4 1.5 1.5 1.3 

B3 1.5 1.3 1.3 1.4 

B4 1.8 1.3 1.4 1.4 

 

REPLICATION 3 

B2 1.3 2.1 1.6 2.4 

B3 1.5 2.0 2.0 1.6 

B1 1.4 1.9 1.6 2.4 

B4 1.7 1.8 1.5 1.4 

7.2  For the Vertical Strip Analysis 

Cross tabulation of Replication and Tillage Method (R x A) 
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 A1 A2 A3 A4 Rep Totals 

REPLICATION I 5.3 5.6 5.6 6.0 22.5 

REPLICATION II 6.0 5.5 5.6 6.4 23.5 

REPLICATION III 5.9 7.8 6.7 7.8 28.2 

Tillage Method Totals 17.2 18.9 17.9 20.2  

Grand Total     74.2 

Calculating the Grand Total (GT) 

𝐺𝑇 =    5.3 + 5.6 + 5.6 + 6.0 + ⋯+ 7.8 = 74.2

𝑛=12

𝑖=1,𝑗=1

 

Calculating the Correction Factor (CF) 

𝐶𝐹 =  
(𝐺𝑇)2

𝑟𝑎𝑏
 

𝐶𝐹 =  
(74.2)2

3 𝑥 4 𝑥 4
 

𝐶𝐹 =  
5505.64

48
 

𝐶𝐹 =  114.70 

where r=no. of replications a=no. of levels of tillage methods, b=no. of levels of 

soil. 

At this point one must compute the sum of squares for items or factor within 

the vertical strip and these are done be done and illustrated below: 

Calculating the Total Sum of Squares (TSS) 

𝑇𝑆𝑆 =   𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 −  𝐶𝐹  

𝑇𝑆𝑆 =   (𝑎1𝑏1

𝑛= 48

𝑖=1,𝑗=1,𝑘=1

𝑟1)2 + ……………+ (𝑎2𝑏3𝑟3)2 − 𝐶𝐹  
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𝑇𝑆𝑆 =   [(1.1)2 + (1.3)2 + (1.4)2 + (1.3)2 + ⋯+  1.4)2 −  114.70  

𝑇𝑆𝑆 =   [1.21 + 1.69 + 1.96 + 1.69 + ⋯+ 1.96] − 114.70 

𝑇𝑆𝑆 =  118.96 − 114.70 

𝑇𝑆𝑆 =  4.26 

Calculating the Replication Sum of Squares (RSS) 

𝑅𝑆𝑆 =  
[(𝑅1𝑇

)2 + (𝑅2𝑇
)2 + (𝑅3𝑇

)2] 

𝑎𝑏
−  𝐶𝐹 

𝑅𝑆𝑆 =  
[(22.5)2 + (23.5)2 + (28.2)2] 

4 𝑥 4
−  114.70  

𝑅𝑆𝑆 =  
[ 506.25 + 552.25 + 795.24] 

16
−  114.70 

𝑅𝑆𝑆 =  (
[1853.74] 

16
−  114.70) 

𝑅𝑆𝑆 = 115.86 −  114.70 

𝑅𝑆𝑆 = 1.16 

Calculating the Tillage Method Sum of Squares (ASS)  

𝐴𝑆𝑆 =  
[(𝐴1𝑇

)2 + (𝐴2𝑇
)2 + (𝐴3𝑇

)2 + (𝐴4𝑇
)2] 

𝑏𝑟
−  𝐶𝐹 

𝐴𝑆𝑆 =  
[(17.2)2 + (18.9)2 + (17.9)2 + (20.2)2] 

4 𝑥 3
−  114.70  

𝐴𝑆𝑆 =  
[ 295.84 + 357.21 + 320.41 + 408.04] 

12
−  114.70 

𝐴𝑆𝑆 =  (
[ 1381.5] 

12
−  114.70) 

𝐴𝑆𝑆 = 115.13 −  114.70 

𝐴𝑆𝑆 = 0.42 

Calculating the Replication and Tillage Method Sum of Squares (RASS) 



Basic Concepts and Applications of Experimental Designs and Analysis 

 

158 http://www.sciencepublishinggroup.com 

Note: one is expected to use the cross tabulation table for replication and 

machine type 

𝑅𝐴𝑆𝑆 =  
(𝐴1𝑟1)2 + ……………+ (𝐴2𝑟3)2

𝑏

𝑛=12

𝑖=1,𝑗=1

−  𝐶𝐹 

𝑅𝐴𝑆𝑆 =  
[(5.3)2 + (5.6)2 + (5.6)2 + ⋯+ (7.8)2] 

4
−  114.70 

𝑅𝐴𝑆𝑆 =  
[28.09 + 31.36 + 31.36 + ⋯+ 60.84] 

4
−  114.70 

𝑅𝐴𝑆𝑆 =  
[466.76 ] 

4
−  114.70 

𝑅𝐴𝑆𝑆 = (116.69 −  114.70) 

𝑅𝐴𝑆𝑆 = 1.99 

Error  x Sum of Squares  for the vertical strip = 𝑅𝐴𝑆𝑆 − 𝑅𝑆𝑆 − 𝐴𝑆𝑆 

𝐸 𝑥 𝑆𝑆 =  𝑅𝐴𝑆𝑆 − 𝑅𝑆𝑆 − 𝐴𝑆𝑆 

𝐸 𝑥 𝑆𝑆 =  1.99 − 1.16 − 0.42 

𝐸 𝑥 𝑆𝑆 =  0.41 

7.3  For the Horizontal Strip Analysis 

Cross tabulation of Replication and Soil Type (R x B) 

 B1 B2 B3 B4 Rep Totals 

REPLICATION I 5.6 5.1 5.7 6.1 22.5 

REPLICATION II 6.4 5.7 5.5 5.9 23.5 

REPLICATION III 7.3 7.4 7.1 6.4 28.2 

Soil Type Totals 19.3 18.2 18.3 18.4  

Grand Total     74.2 
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Calculating the Replication Sum of Squares (RSS) 

𝑅𝑆𝑆 =  
[(𝑅1𝑇

)2 + (𝑅2𝑇
)2 + (𝑅3𝑇

)2] 

𝑎𝑏
−  𝐶𝐹 

𝑅𝑆𝑆 =  
[(22.5)2 + (23.5)2 + (28.2)2] 

4 𝑥 4
−  114.70  

𝑅𝑆𝑆 =  
[ 506.25 + 552.25 + 795.24] 

16
−  114.70 

𝑅𝑆𝑆 =  (
[1853.74] 

16
−  114.70) 

𝑅𝑆𝑆 = 115.86 −  114.70 

𝑅𝑆𝑆 = 1.16 

Calculating the Soil Type Sum of Squares (BSS)  

𝐵𝑆𝑆 =  
[(𝐵1𝑇

)2 + (𝐵2𝑇
)2 + (𝐵3𝑇

)2 + (𝐵4𝑇
)2] 

𝑎𝑟
−  𝐶𝐹 

𝐵𝑆𝑆 =  
[(19.3)2 + (18.2)2 + (18.3)2 + (18.4)2] 

4 𝑥 3
−  114.70  

𝐵𝑆𝑆 =  
[ 372.49 + 331.24 + 334.89 + 338.56] 

12
−  114.70 

𝐵𝑆𝑆 =  (
[ 1377.18] 

12
−  114.70) 

𝐵𝑆𝑆 = 114.77 −  114.70 

𝐵𝑆𝑆 = 0.07 

Calculating the Replication and Tillage Method Sum of Squares (RBSS) 

Note: one is expected to use the cross tabulation table for replication and 

machine type 

𝑅𝐵𝑆𝑆 =  
(𝐵1𝑟1)2 + ……………+ (𝐵2𝑟3)2

𝑎

𝑛=12

𝑖=1,𝑗=1

−  𝐶𝐹 
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𝑅𝐵𝑆𝑆 =  
[(5.6)2 + (5.1)2 + (5.7)2 + ⋯+ (6.4)2] 

4
−  114.70 

𝑅𝐵𝑆𝑆 =  
[31.36 + 26.01 + 32.49 + ⋯+ 40.96] 

4
−  114.70  

𝑅𝐵𝑆𝑆 =  
[465 ] 

4
−  114.70 

𝑅𝐵𝑆𝑆 = (116.25 −  114.70) 

𝑅𝐵𝑆𝑆 = 1.55 

Error (y) Sum of Squares (for the horizontal strip) = 𝑅𝐵𝑆𝑆 − 𝑅𝑆𝑆 − 𝐵𝑆𝑆 

𝐸 𝑦 𝑆𝑆 =  𝑅𝐵𝑆𝑆 − 𝑅𝑆𝑆 − 𝐵𝑆𝑆 

𝐸 𝑦 𝑆𝑆 =  1.55 − 1.16 − 0.07 

𝐸 𝑦 𝑆𝑆 =  0.32 

7.4  For the Interaction Strip Analysis 

Cross tabulation of Tillage Method (A) and Soil Type (B) (A x B) 

 A1 A2 A3 A4 B Totals 

B1 4.0 4.7 4.2 6.4 19.3 

B2 3.8 4.9 4.5 5.0 18.2 

B3 4.3 4.8 4.7 4.5 18.3 

B4 5.1 4.5 4.5 4.3 18.4 

A TOTAL  17.2 18.9 17.9 20.2 74.2 

Calculating the Sum of Squares of the interaction between Tillage Method 

and Soil Type 

(𝐴𝑥𝐵)𝑆𝑆 =  
(𝐴1𝐵1)2 +  ……………+ (𝐴4𝐵4)2

𝑟

𝑛=16

𝑖=1,𝑗=1

−  𝐶𝐹 

(𝐴𝑥𝐵)𝑆𝑆 =  
[(4.0)2 + (4.7)2 + (4.2)2 + ⋯+ (4.3)2] 

𝑟
−  114.70 
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(𝐴𝑥𝐵)𝑆𝑆 =  
 16 + 22.09 + 17.64 + ⋯+ 18.49 

3
−  114.70  

(𝐴𝑥𝐵)𝑆𝑆 =  
 248.23  

3
−  114.70 

(𝐴𝑥𝐵)𝑆𝑆 = 116.42 −  114.70 

(𝐴𝑥𝐵)𝑆𝑆 = 1.72 

 𝐸𝑟𝑟𝑜𝑟 (𝑧) 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝐸 𝑧 𝑆𝑆 
= 𝑇𝑆𝑆 − (𝑅𝑆𝑆 + 𝐴𝑆𝑆 + 𝐸 𝑥 𝑆𝑆 + 𝐵𝑆𝑆 +  𝐴𝑥𝐵 𝑆𝑆 + 𝐸 𝑦 𝑆𝑆 

𝐸 𝑧 𝑆𝑆 = 4.26 − (1.16 + 0.42 + 0.41 + 0.07 + 1.72 + 0.32) 

𝐸(𝑧)𝑆𝑆 = 4.26 − 4.1 

𝐸 𝑧 𝑆𝑆 = 0.16 

7.5  Completing the ANOVA Table  

Sources of 

Variation 
df 

Sum of  

Squares (SS) 

Mean Sum of 

Squares (MSS) 
Fcal 

Replication `r -1 = 3 – 1 = 2 1.16 
1.16

2
= 0.58  

Main factor -

Tillage Method 
(A) 

a -1 = 4-1 = 3 0.42 
0.42

3
= 0.14 

𝑀𝑆𝑆(𝐴)

𝑀𝑆𝑆(𝑒𝑟𝑟𝑜𝑟 𝑥)

=
0.14

0.07
= 2 

Error (x) (r-1)(a-1) = 2 x 3 = 6 0.41 
0.41

6
=  0.07  

Sub factor – Soil 

type (B) 
b -1 = 4 -1 =3 0.07 

0.07

3
=  0.02 

𝑀𝑆𝑆(𝐴)

𝑀𝑆𝑆(𝑒𝑟𝑟𝑜𝑟𝑦)

=
0.02

0.53
= 0.04 

Error (y) 
(r -1)(b -1) = (3-1)(4-1)  

=2 x 3 = 6 
0.32 

0.32

6
= 0.53  

Interaction 

between – Tillage 

Method x Soil 
Type (A x B) 

(a-1)(b-1) = (4-1)(4-1)  

= 3 x 3 = 9 
1.72 

1.72

9
= 0.19 

𝑀𝑆𝑆(𝐴)

𝑀𝑆𝑆(𝑒𝑟𝑟𝑜𝑟 𝑧)

=
0.19

0.01
= 19 

Error (z) 
(r-1)(a-1)(b-1) =(3-1)(4-

1)(4-1) = 2 x 3 x 3 = 18 
0.16 

0.16

18
= 0.01  

Total rab-1 = 48 -1 = 47 4.26   
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Reading of the F-critical or tabulated values from the F- table at the various 

assigned levels of significance allowed. 

For the case being considered, 1% and 5% levels of significance would be used. 

F-critical table at 5% (0.05) 

 

F-critical table at 1% (0.01) 

 

Note: The read values from the table have been highlighted to show how the 

F-critical values read from the F-table. The values are always read using the 

degree of freedom of a particular source of variation against the degree of 

freedom of a particular error. 
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Sources of Variations Fcal Fcrit (5%) Fcrit (1%) 

Main Plot Factor (A) 
0.14

0.07
= 2 df(3,6) = 4.76 df(3,6) = 9.78 

Sub Plot Factor (B) 
0.02

0.53
= 0.04 df (3,6) = 4.76 df(3,6) = 9.78 

Interactions ( A x B) 
0.19

0.01
= 1.16 df (9,18) =2.46 df(9,18) = 3.60 

7.6  Taking the Decision and Making the Conclusion 

Main Plot Factor (Tillage Method): 

𝐹𝑐𝑎𝑙 (2) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 3,6 @ 5% = 4.76  

𝐹𝑐𝑎𝑙 (2) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 3,6 @ 1% = 9.78  

Conclusion on Main Plot Factor (Soil Type):  

There is no significance difference exists between the tillage methods (A) 

used in the experiment at both levels of significance. Thus the tillage methods 

are similar. 

Subplot Factor or Second Factor (Soil Type): 

𝐹𝑐𝑎𝑙 (0.04) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 3,6 @ 5% = 4.76  

𝐹𝑐𝑎𝑙 (0.04) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 3,6 @ 1% = 9.78  

Conclusion on Subplot (Soil Type) 

No significant difference exists between the various soil types. Meaning the 

soil types did not differ statistically  

Interactions (M x W): 

𝐹𝑐𝑎𝑙 (1.16) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 9,18 @ 5% = 2.46  

𝐹𝑐𝑎𝑙 (1.16) < 𝐹𝑐𝑟𝑖𝑡   𝑑𝑓 9,18 @ 1% = 3.60  
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Conclusion on Interactions (A x B) 

There exists no significance difference. Hence one can conclude that the 

interactions between the main and sub factors did not differ statistically.  
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