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Preface

Researchers, academics and students are engaged in one form of research or
the other that requires designing. However be it as it may, most of these
individuals are not conversant with selecting the appropriate experimental
designs that should best suit their respective researches or studies. To some
understanding the concepts and basis of these designs are quite a challenge. Still
others have a huge challenge handling these designs because of the complex

mathematics underpinning these designs.

In addition there is no one stop book that treats in details the various designs
and the mathematical principles underlying them. One might advance the
argument that computer applications aid analyzing of these designs but the same
cannot be said of these designing and selecting the appropriate designs for

individuals in the conduct researches.

This book covers thoroughly the explanations of the concepts and basic terms
in almost all the known experimental designs; the mathematics underlying these;
how to select the appropriate designs for a study and a logical sequence of
analyzing these designs. For each of these designs, hypothetical examples of
experiments have been provided with stepwise approaches towards analyzing
them. It treats complex designs in a simplified way to enhance the understanding
of its readership. The designs are arranged in a systematic order of increasing

complexity.

Albeit the underlying principles of experimental designs and analysis are based
on mathematic, the other aspect of designs, which is the actualization or
practising is equally challenging. Oftentimes when it comes to mounting of an
experiment using a particular design, people understand the mathematical basis,
however identifying and allocating the different treatments or levels or factors of

treatments to each plot or experimental units (as to whether they are

http://www.sciencepublishinggroup.com VII



Preface

homogeneous or heterogeneous) become a dilemma to them. This book does not
only deal with the mathematics behind each design but also how to identify the
treatments; levels of treatments; whether a plot or a unit is homogenous or
heterogencous; and explains and demonstrate with practical examples on how to
identify and allocate factor in the design as main factors or sub factors based when

applicable.

Each chapter dwells extensively and exhaustively on a particular design with
hypothetical data analysed and interpretations to aid the readers understanding of

the design.

This is thus a must read book for all involved in designing of experiments in

diverse fields.
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Concepts and Basis of Experimental
Design

Felix Kutsanedzie'"; Sylvester Achio';

Edmund Ameko'; Victoria Ofori’; Paul Goddey1

'Accra Polytechnic, GP 561, Accra, Ghana

2Agri(zultural Engineering Department, KNUST, Ghana

Abstract

The concepts and basic terms underlying experimental designs are not well
understood by students and some researchers. For experimental designs to be
understood, the various terms used and applied in designing an experiment must be
well explained. Some of the terms used and applied in the field of experimental
designs are quite wrongly used and applied by students and many others involved in

research. This paper defines and explains the terms comprehensively.
Keywords

Experimental Design, Treatment, Bias, Randomization, Experiment, Variance,

Variable
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Basic Concepts and Applications of Experimental Designs and Analysis

1.1 Introduction

There is variability in all living and non-living things that exist in nature.
Even though things may be categorized or classified into a particular group,
there still could exist variability between things placed in the same group.
Variations exist more in living things than in non-living things because of their
characteristics — growth, reproduction, excretion, irritability, movement,
respiration. The variability in living organisms may be linked to special
functions they play. Some plants have narrower leaves than others; others have
their leaves reduced to spine as a way of conserving water loss through
respiration and transpiration. Some human beings are ambidextrous, thus they
are able to do so many things at a goal. It is very important as a matter of fact
when researching on things to be able to ascertain and quantify the variability
between them. In order to do this, there is a need for one to design experiments
to prove statistically how variables differ or relate to each other.

Oftentimes people complain of the mathematical principles on which the
concept rests as it is tedious working such calculations manually. In the advent
of computers, computations have been made quite easy but the underlying
principles need to be understood before using computers to do the various
calculations. It will also explain and define the terms used in the design of
experiments as well as the types of design and when they are supposed to be
used in experiment.

1.2 Terms Used in Experimental Designs

There are so many terms one to know and understand in the designing of
experiment. When these terms are not properly understood and used by the

4 http://www.sciencepublishinggroup.com



Chapter 1 Concepts and Basis of Experimental Design

designer, it would lead to confusion and wrong results being churned out at the
end. Some of the terms are explained below.

1.3 Experimental Design

It refers to the allocation of treatments to experimental units or materials or
plots. Normally when an experiment is to be mounted, it must first be designed.
Thus experimental design encapsulates how an experiment must be conducted,
and how data collected is to be collected, analysed and interpreted. It therefore
suggests that every experiment (not survey) must have its unique and
appropriate design.

1.4 Experiment

It is an investigation where an investigator imposes treatment(s) on
experimental units to ascertain the effects on the unit by the measurement of
response variables on the unit due to the imposition.

When one wants to conduct an experiment, the individual considers what to
perform the experiment on (experiment unit or material) and what to use on the
experiment unit to be able to study their effects on the unit (treatment) and the
measurements to take from the units (response variable) in order to arrive at
conclusion. However, a researcher can have a test and a controlled experiment.

1.5 Test Experiment
In a test experiment, all conditions or treatment are made available except the
treatment the researcher is interested in investigating for effects on the

experimental material. For instance, if the researcher wants to know the effects
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Basic Concepts and Applications of Experimental Designs and Analysis

of nitrogen on a plant growth, he / she provides all the conditions for plant
growth with the exception of nitrogen. When all other need conditions all
provided, whatever effects or defects that are observed are considered to be due
to the condition lacked in the experiment.

1.6 Control Experiment

It is an experiment in which all treatments or conditions are necessary for the
experimental material to allow the needed response variables to be observed and
measured. This is the converse of the test experiment. The researcher would
therefore compare the results from a test and a control experiment to do
interpretation for a conclusion to be made.

1.7 Observatory Study

It is also an investigation in which no treatment is imposed on an
experimental unit by the investigator but he or she observes and measures
response variables on the unit.

1.8 Treatments

It is the set of conditions or circumstances created for an experiment or
investigation. For instance an investigator might want to study the effect of
acids on a particular experimental unit or material. The treatment one can then
impose on the experimental unit to create and acid condition could be the
introduction of an acid. Hence the acid becomes the treatment in this case.

6 http://www.sciencepublishinggroup.com



Chapter 1 Concepts and Basis of Experimental Design
1.9 Factor

It is an explanatory variable to be studied in an experiment and can be set at
different values.

Once the treatment has been selected as acid, the experimenter might be
interested in looking at more than one form or type of an acid. Each form or
type of an acid thus becomes a factor in the experiment.

1.10 Level

The level of a factor refers to the different values of factors under considera-
tion or to be studied. For example in the case of a treatment (acid condition),
factors such as sulphuric acid, carbonic acid, hydrogen sulphide can all be
considered as factors because they are all different kinds of acids. Now, the
concentrations or the quantities of these acids used in creating the acidic
conditions referred to as the levels of the factors

1.11 Replication

It refers to the number of times a complete set of treatment is repeated in an
experiment. When a researcher applies the same treatment to the same
experimental unit or materials, provided the conditions are the same, the
response variables would yield the same measurement (the results should be the
same). To ensure consistency in results, a researcher repeats the same
treatments over the experimental units in order to minimize errors and biases
which are likely to be overlooked when repetition or cross checking is not done.

http://www.sciencepublishinggroup.com 7
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1.12 Experimental Unit

It is physical entity or subject on which the treatment is applied independent
of other units. In other words, it is what generates the response variable that the
investigator needs to measure and observe to address the objective of the
experiment. It should be noted that an experiment can have homogeneous or
heterogeneous experimental units and thus might give different response
variables. It is therefore important for the research to know if his or her units are
homogeneous or not in order to apply the appropriate design.

1.13 A Plot

It is an example of experimental units - a smallest unit of land that a treatment
is applied to. The conditions or compositions of a piece of land differ in
chemically, physically and biologically. If an experiment needs to be conducted
on a piece of land, these chemical, physical and biological are likely to affect the
results. Thus a plot is just a small piece of land, where the variations in its
chemical, physical and biological properties are expected to lesser.

1.14 A Block

It is a large area or experimental unit consisting of several identical units on
which all or most of the treatments under consideration are applied. Thus plots
can be blocked — can be classified into blocks in an experiment. This allows the
experimenter to compare variations in all the treatments when considering

heterogeneous experimental units.
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Chapter 1 Concepts and Basis of Experimental Design
1.15 Response Variable

A characteristic of an experimental unit observed or measured after a
treatment has been applied to it. In other words, it is the reaction observable or
measurable reactions generated by experimental units as a result of application
or imposition of a treatment to/on it. These observations and measures are what
the investigator analyzes to address the objectives of the experiment.

1.16 Explanatory Variable

It is the characteristics of a treatment (factor) that induces the experimental
unit to generate a response variable.

1.17 Experimental Error

It is a measure of the differences between experimental units on which the
same treatment is applied. It seeks to establish the variation or variances in the
experimental units. These variations may stem from the units, the lack of
uniformity in the way the investigator applied the treatment, uncontrolled external
influences and others that cannot be explained (natural). For example, if the same
treatment (seed of pepper) is applied on an experimental units (plots).

1.18 Randomization

It is the act of allocating treatments to plots in an experimental design such
that each has equal chance of receiving each treatment — plots or experimental
units are not favoured or discriminated against. Randomization reduces the
incidence of biases in allocation of treatment. An experimenter can decide to
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treat a particular unit differently due to personal beliefs or ideals thereby
introducing errors. However, when treatments are randomized, this can never
happen. Randomization can be done by using random numbers generated using
the computer or random number tables. To give different ration of feed
(treatments) to rats (experimental units), the quantity feeds can be written on a
paper, folded, placed in a cup, mixed up, then picked randomly and them
applied to the experimental units.

1.19 Single-Factor Experiment

It is an experiment in which the investigator varies only one factor while all
the others are kept constant. For an experiment in which the treatment is an acid,
the factors can be hydrochloric acid and sulphuric acid. The experimenter can
choose to vary the concentration of one of the factors while maintaining the
other. When this happens, the experiment becomes a single-factor experiment.

1.20 Multi—Factorial Experiment

It is an experiment in which all the factors involved in the experiment are
varied unlike the single-factor experiment.

1.21 Full Factorial Treatment Design

In a full factorial treatment design, the treatments involve all possible
combinations of the levels of the factors of interest.

10 http://www.sciencepublishinggroup.com



Chapter 1 Concepts and Basis of Experimental Design
1.22 Observational Unit

An observational unit is a unit on which the response variable is observed and
measured. This unit can either be the same as the experimental unit in some
cases and in other cases not. For instance, if seeds are sown on different types of
soil to ascertain the yields of plants in those soils, the soil is the experimental
units but the fruits on the plant become observation units.

1.23 Conducting an Experiment

To conduct an experiment, one needs to consider the following:
o Identify, define and state the problem

One cannot investigate a problem without identifying it. The first and
foremost thing to do is to identify and define the problem such that all could
understand it as a problem that needs to be tackled and solved. The problem
statement should be precise and concise. It should not be ambiguous.

e State the objectives and develop a hypothesis of the study

The objectives of conducting the experiment must be clearly stated. They
are basically the reasons for conducting the experiment. The problem can
be woven to develop a hypothesis — a statement which is neither
considered as true or false but needs to be investigated and proven to
otherwise. It is therefore the data collected from an experiment carried out
that can provide evidence for or against the hypothesis.

e Designing and conducting the experiment

http://www.sciencepublishinggroup.com 11



Basic Concepts and Applications of Experimental Designs and Analysis

Having identified, defined and stated the problem, the research needs to
design appropriate experiment that would help him or her conduct relevant
data to prove the hypothesis. The designing of the experiment therefore
plays a crucial role in proving the hypothesis and hence achieving the
stated objectives of the experiment. Research therefore needs to be well
baked in experimental designs to be able to design good experiments.

Collecting data

The execution of the experiment allows the researcher to collect data on
the response variables from experimental units induced by explanatory
variables from factors of the treatments being considered in the experiment
or to observe and measure the response variables in the case of observatory
studies.
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Complete Randomized Design is one of the design analysis that is not well
understood by researchers. However the need to understand such a design is very
vital in the case where the experimental units being considered are homogeneous
or uniform. This paper uses examples to explain the underlying principles and

how the design is used for analysis.
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2.1 Introduction

Complete Randomized Design (CRD) is the simplest form of design used in
experimental analysis. It involves randomization of treatments on homogeneous
or uniform experimental units /plots uniform. Since in nature or reality, most
experimental units are not homogeneous, it makes this design suited for large
experiments vis-&vis the homogeneity requirement of the experimental units.
This presupposes that it is not suitable for the analysis of large field experiments.
It is thus suited for small experiments.

In allocation or assignment of treatments to experimental units, randomiza-
tion is used. Randomization involves the assigning of treatments to experiment
units such that each treatment has equal chance of being assigned to units
available. The randomization uses random tables and computer programmes to
generate random numbers for the allocation of treatments to units. For instance,
when one has five treatments — chloroquine (A), malarex (B), paracetamol (C),
chamoquine (D) and panadol (E) are given to sterile rabbits(experimental units)
to study their effects on them. Assuming that this experiment is to be replicated
(repeated) five times, it means 5 (treatments) x 5 (replicates) totaling 25
(experimental units) from which data will be collected. The table below
indicates how the randomization is done:

Table 2.1 Randomization of Five Treatments in a Complete Randomized Design (CRD).

A B C D E
B A D C D
Cc D E A (G
D E B B A
E Cc A E B

18 http://www.sciencepublishinggroup.com



Chapter 2 Complete Randomized Design (CRD)

Each of the boxes in the tables represent an experimental unit or plots (sterile
rabbits) on which the various treatments (the medicines) denoted in the boxes are
to be subjected to. This means that the researcher can table twenty (25) pieces of
papers and label them with the letters A to E in turns until the twenty (25) pieces
of papers are exhausted. The labeled pieces of papers are then folded, dropped in
a cup and, shuffled. The pieces of papers are then picked randomly one after the
order to denote the various plots or experimental units that the picked treatments
would be applied to i.e. from 1% to the 25" experimental units. When this
procedure is followed religiously, treatments are said to be randomized on the

experimental units.

Once the experiment design is set, the treatment can then be allocated
randomly to the experimental units according to the design. During this time
onwards are the researcher is supposed to observe the observation units and to
measure and determine responses of the experimental units to the treatments
they have been subjected to.

2.2 Analysis of Data Obtained from the CRD

Assuming the treatments were subjected to the experiment units in order to
determine their efficacies based on the time taken in days for a named symptom
to be corrected, the researcher would have to observe the various treatments and
record the time taken in days as summarized in the table below:

Data collected on time (measured in days) taken for a named symptoms on
experimental units for each the respective replicates of each treatment
considered in the CRD.

http://www.sciencepublishinggroup.com 19
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Table 2.2 Results Collected on responses of treatment to experimental units in CRD.

A=3 B=3 Cc=3 D=6 E=3
B=4 A=4 D=3 C=4 D=4
C=5 D=4 E=2 A=3 C=4
D=6 E=3 B=4 B=3 A=5
E=3 Cc=2 A=5 E=2 B=3

In analyzing CRD designs after that had been collected from an experiment
that have been carried, the must approach the Analysis of Variance (ANOVA)
in terms of the following classification: designs having treatments with equal
replication; designs having treatments with unequal replications, designs having
treatments with equal number of samples per experimental unit; designs having
number of subsamples that are unequal.

Design and Analysis of Variance (ANOVA) for treatments with equal number
of replication

For the researcher to subject the data recorded in the Table 2.2, it must be re-

summarized as below:

No/Replications A B C D E
1 3 3 3 6 3

2 4 4 4 3 2
3 3 4 5 4 3
4 5 3 4 4 3
5 5 3 2 6 2
A=3 B=3 c=3 D=6 E=3
B=4 A=4 D=3 CcC=4 D=4
C=5 D=4 E=2 A=3 cC=4
D=6 E=3 B=4 B=3 A=5
E=3 Cc=2 A=5 E=2 B=3
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Chapter 2 Complete Randomized Design (CRD)

The first step in the analysis is to put forth the hypothesis:

Before analyzing the data, there is the need to put forward the following
hypothesis

Hol Ba = K6 = e = b = [k
Hal Ma# 6= e = b = Lk
H,: All the means of the treatments are equal

Ha: At least one of the means of the treatments is different

Ho=Null hypothesis, Ha=Alternate hypothesis, u= means of treatments

No/Replications A B C D E
1 3 3 3 6 3
2 4 4 4 3 2
3 3 4 5 4 3
4 5 3 4 4 3
5 5 3 2 6 2
Tt= 20 17 18 23 13
2Tt= 91

CF = (ZTt)"2/(r x t) 3.64

TSS = 3((3)*2 + (3)"2 +...+ (2)"2) -CF 357.36

TtSS = 3((20)"2 +(17)"2 + (13)*2) Ir) - CF  338.56

ESS = TSS -TtSS 18.8

Tt, = Z(3+4+~~+5) = 20
Tty = Z(3+4+~-+3) =17

Tte = Z(3+4+~--+2) =18
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Tty = R(6+3+--+6) = 23

Tt = Z(3+2+---+2) =13

Ttr=Total treatment, ESS=Error Sum of Squares, TSS= Total Sum of Squares,

TtSS=Treatment Sum of Squares, CF= Correction Factor.

The second step is calculating of the Correction Factor:

_ X(Tey)?

CF = = 331.24
(rxt)

The third step is calculating of the Total Sum of Squares:

TSS = Z((3)2 +(3)2+ (32 +(6)% + (37 + (4)? ... +(2)%) -CF = 357.36

The fourth step is calculating of the Treatment Sum of Squares:

z ((20)% + (17)? + (18)% + (23)% + (13)?) B
5

TtSS = CF = 338.56

The fifth step is calculating of the Error Sum of Squares:

ESS = TSS — TtSS = 357.36 — 338.56 = 18.8

Ttr=Treatment Total, TSS=Total Sum of Squares, TtSS=Treatment Sum of
Squares, ESS=Error Sum of Squares, CF=Correction Factor, t=number of

treatment, r = number of replication.
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The sixth step is completing the ANOVA table:

ANOVA TABLE
Sources of Variation df SS) MS Fcal. Fcrit. (5%0)
Treatment t-1=5-1=4 338.56 84.64 90.04255 2.87
Error [((rxt)-1)-(t-1))] =24-4=20 188 0.94
Total (rxt)-1=(5x5)-1=24 357.36
Fcrit (5%) @ df of 4,20 =2.87
Ferit (1%) @ df of 4,20 =4.43

df=degree of freedom, SS=Sum of Squares, MS=Mean Square.

The degree of freedom for the all items under the sources of variations is one
minus the item: df of treatment is 5 — 1; df for the total number of observation is
25-1; the df of freedom for the error is 24 - 4.

The Mean Square (MS) is the ratio of the SS to df: Treatment MS is
calculated as:

338.56

Treatment Mean Square (MS) = = 84.64

18.8
Error Mean Square (MS) = 0 = 0.94

The F calculated value is the ratio of Treatment Mean Square to the Error
Mean Square:

Treatment Mean Square  84.64

Fcal. = = 90.04255

Error Mean Square  0.94

The seventh step looking up the F-critical table to the F- critical values:

In looking at the F-critical table for the critical value, the level of significance
or level of confidence is used. If the level of significance used is 1%, then the
level of confidence is 99%; if the level of significance is 5%, the level of
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confidence is 95%. Normally the 1% and 5% levels of significances are used
depending on the precision of the work being undertaken.

Whether the 1% or 5% level of significance is used or not, the degree of
freedom of the treatment variation is used against the degree of freedom of the
error variation as (x, y), where the degree of freedom of the treatment is located
horizontally (x-axis) against the degree of freedom of the error variation on the
vertically (y-axis) and the intercept of these two gives the corresponding value
for the F-critical or tabulated value.

Thus using the F-critical value from 5% (0.05) level of significance table for
instance, one has to locate the degree of freedom of the treatment i.e. 4
horizontally on the 5% F- table, and the degree of freedom of the error i.e. 20 on
the vertically. Where the two intercepts, the F- critical or tabulated value can be
read as 2.87. When the same procedure is followed on the 1% F —table, at using
the degree of freedom of the treatment as 4 against the degree of freedom of the
error as 20, the F- critical or tabulated value of 4.43 is obtained. This is
summarized as follows:

Fcrit or tab. at 5% (0.05) = 2.87
Fcrit or tab.at 1% (0.01) = 4.43

The eighth step is making the decision or conclusion:
The decision rule is summarized as follows:

If F calculated at the level of significance or level of confidence and degrees of
freedoms stated is greater or equal to (>) the F critical or tabulated, the null
hypothesis is rejected and therefore concluded that there is enough evidence from
the data to support the rejection of the null hypothesis because the mean of the
various treatments are significantly different. This is expressed mathematically as:
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Fcal > Fcrit. or tab. (5%)at 4,20
Fcal > Fcrit. or tab. (1%)at 4,20

For instance in the case being considered:

Fcal (90.04) = 2.87, Fcrit. or tab. (5%)at 4,20
Fcal (90.04) > 4.43, Fcrit. or tab. (1%)at 4,20

Therefore the means of the various treatments being considered are
significantly different at both 5% (0.05) and 1% (0.01)

However if the F calculated at the level of significance or level of confidence
and degrees of freedoms stated is less than to (<) the F critical or tabulated. We
fail to reject the null hypothesis and conclude that there is enough evidence
supporting the fact that the means of the various treatments are not significantly
different. This is expressed as follows:

Fcal < Fcrit.or tab. (5%)at 4,20
Fcal < Fcrit. or tab. (1%)at 4,20

It should be noted whenever a level of significance is chosen; the p-value
(probability value) is equal to the level of significance. Thus for 5%, it means
the p-value = 0.05, at 1%, p-value = 0.01. This implies that when the F
calculated > F critical, it is concluded that means are significantly different;
hence the p-value will be less than the level of significance chosen i.e. < 0.05
and < 0.01 at 5% and 1% respectively.
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Table 2.3 F critical table at 5% (0.05).  Table 2.4 F critical table at 1% (0.01).

Critical values of F for the 0.05 significance Critical values of F for the 0.01 significance
1 2 3 4 5 1 2 3 4 5

1| 16145 19950 21571 22458 23016 2 1405219 499952 5403.34 562462 576365 5
2 18.91 19.00 19.16 19.25 19.30 2 98.50 99.00 9917 99.25 99.30
3 10.13 9.55 9.28 912 9.01 3 3412 30.82 29.46 28.71 28.24
4 7.7 6.94 6.59 6.39 6.26 4 21.20 18.00 16.69 15.98 15.52
5 6.61 579 541 519 5.05 5 16 26 1327 12.06 11.39 1097
6 5.99 514 476 453 4.39 6 13.75 10.93 9.78 913 8.75
7 5.59 474 435 412 3.97 T 12.25 9.55 8.45 7.85 7.46
8 532 4.46 407 384 3.69 8 11.26 8.65 7.59 7.0 6.63
9 5.12 4.26 3.86 3.63 3.48 9 10.56 8.02 6.99 6.42 6.06
10 497 410 3 348 3.33 10 10.04 7.56 6.55 5.99 5.64
1" 484 398 359 336 320 " 9.65 721 6.22 5.67 5.32
12 475 3.89 3.49 3.26 n 12 9133 693 595 541 506
13 4.67 38 XY 318 3.03 13 9.07 6.70 5.74 521 4.86
14 4.60 3.74 334 3N 296 14 8.86 6.52 5.56 5.04 A.70
15 4.54 3.68 3.29 3.06 290 15 8.68 6.36 542 489 4.56
16 4.49 3.63 3.24 30 2.85 16 8.53 6.23 529 ATT 444
17 4.45 3.59 3.20 297 2.8 17 8.40 6.11 519 46T 434
18 4.41 3.56 3.16 293 277 18 8.99 6.01 5.00 4.58 4.95
19 4.38 3.52 313 290 274 19 819 5.93 5.01 450 417
20| 433 348 310 B 21N 20 8.10 585 494 443 410
21 433 347 3.07 284 2.69 Fal 202 578 487 437 4.04

The ninth step is calculating the Coefficient of Variation:

S
%CV = = X 100
? X

Error MS = S?
S = vError MS
VvError MS
X
%CV = 3 '64 x 100 = 26.64
CV = 26.64%

CV = coef ficient of variation, S = Standard deviation

Error MS = Error Mean Square, X = mean of treatment

The Coefficient of Variation is the ratio of the standard deviation to the mean
of the treatments expressed in percentage. It is a measure of the consistency of
the mean of the treatment or the variations in the mean of the treatment. It
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implies that when the standard deviation increases the variations in the means of
the treatment increases. The CV can also be taken as the measure of variations
in the means of the treatments. Thus the lower the CV value, the more
consistent or uniform the means of the treatment.

Design and Analysis of Variance (ANOVA) for treatments with unequal
number of replication

No/Replications A B C D E
1 3 3 3 6 3
%) 4 4 4 3 2
3 3 4 5 4 3
4 3 4 3
5 3 2

This analysis is done when dealing with unequal number of replications of
the treatment. In cases like this, the same preambles are used but with variations
in the various formulae used in the computation. So we proceed to follow the
same steps used earlier.

The first step in the analysis is to put forth the hypothesis:

Before analyzing the data, there is the need to put forward the following
hypothesis

Hol e = e = 6= kb = Lk

Hi: W # b= 1B = b = Lk (At least one of the treatment means differ from the

others).
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The second step is calculating of the Correction Factor:

No/Replications A B C D E
1 3 3 3 6 3
2 4 4 4 3 2
3 3 4 5 4 3
4 3 4 3
5 3 2
Tt 10 17 12 17 13
STt 69
CF = (ZTt)"2/(r)) 238.05
TSS 16.95
TtSS 7.13
ESS 9.82
Tt mean 3.45
r
CF = (69)° = 238.05

where r = (ry + r5 + 1 + 1p + 1), r= total number of observations for the

treatments.

The third step is calculating of the Total Sum of Squares:

TSS = Z((a)2 +(3)2+ 32+ (6)* + (3)% + (4)% ... +(2)?) - 238.05 = 16.95

The fourth step is calculating of the Treatment Sum of Squares:

2 2 2 2 2
TESS = z :((T';A) N (Ttg) + (Tte) N (Ttp) . (Ttg) o
A

I'g I'c I'p I'g

(10)*>  (17)*  (12)*  (17)*> (13)?
TtSS=Z<3+ el

> -238.05=7.13
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TtSS = Z 245.18-238.05 =7.13

The fifth step is calculating of the Error Sum of Squares:

ESS = TSS — TtSS = 16.95 — 7.13 = 9.82

The sixth step is completing the ANOVA table:

ANOVA TABLE
Sources of Variation df SS MS  Fcal. Fcrit. (5%)
Treatment t-1=5-1=4 7.13 178 2.72 3.06
Error [((r-1)-(t-1))] =19-4=15 9.82 0.65
Total r-1=(20)-1=19 16.95

The seventh step looking up the F-critical Table to the F-critical values:

This follows the earlier procedures used in looking up the critical values from
the F critical Table

Fcrit. or tab. (5%)at df of 4,15 = 3.06
Fcrit. or tab. (1%)at df of 4,15 = 4.89

Critical values of F for the 0.05 significanc: Critical values of F for the 0.01 significanc
1 2 3 4 5 1 2 3 4 5
16145 199.50 21571 22458 230.16 405219 499952 540334 562462 576365
18.51  19.00 1916 1925  19.30 9850 99.00 9917 9925  99.30
10.13 9.55 9.28 9.12 9.01 3412 3082 2946 2871 2824
771 6.94 6.59 6.39 6.26 2120 1800 1669 1598 1552
6.61 5.79 5.41 5.19 5.05 1626 1327 1206 1139 1097
5.99 5.14 4.76 433 439 1375  10.93 9.78 9.15 8.75
5.59 4.74 435 412 397 12.25 9.55 8.45 7.85 7.46
5.32 4.46 4.07 34 3.69 11.26 8.65 7.59 7.01 6.63
5.12 4.26 3.86 3.63 348 10.56 8.02 6.99 6.42 6.06
10 497 4.10 37 348 333 10 10.04 7.56 6.55 5.99 5.64
1 4.84 3.98 3.59 3.36 320 1 9.65 7.21 6.22 567 5.32
12 475 3.89 3.49 3.26 311 12 9.33 6.93 5.95 541 5.06
13 467 3.81 34 318 303 13 9.07 6.70 5.74 521 4.86
14 4.60 374 3134 3N 296 14 8.86 6.52 5.56 5.04 4.70
15 454 3.68 3.29 3.06 2.90 15 8.68 6.36 5.42 4389 456
16 449 3.63 324 3.01 285 16 8.53 6.23 5.29 477 4.44

[==- =R R FUN AR
W0~ L b A=

The eighth step is making the decision or conclusion:

Fcal. (2.72) < (3.06), Fcrit. or tab. (5%)at df of 4,15
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Fcal. (2.72) < (4.89), Fcrit. or tab. (1%)at df of 4,15

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01)
level of significance and conclude that the means are not significantly different
based on the data available.

The ninth step is calculating the Coefficient of Variation:

VError MS
%CV = 3 ;}5 x 100 = 23.45
CV = 23.45%

Design and Analysis of Variance (ANOVA) with equal number of samples per
experimental units with treatments of equal number of replication

Consider an experimental design where three different concentrations (10M,
20M and 30M) of acetone are applied to dissolve a Perspex material chopped
into five different thicknesses and replicated four times alongside taking the
records of the time for the dissolution of chopped to be realized in minutes. This
is an example of CRD design that requires ANOVA with equal number of
samples per experimental unit with treatments of equal number of replication.
The table below represents the summary of this information:

Conc. (M) 10M 20M 30M
Perspex” Perspex” Perspex”
Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4
1 4 5 6 4 5 6 7 8 9 4 5 5
2 5 4 6 4 3 6 7 7 4 6 5 5
3 6 7 7 5 6 6 7 5 5 5 4 7
4 4 7 8 6 4 5 5 6 6 6 4 6
5 7 8 9 4 5 6 7 4 7 7 8 9
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The first step in the analysis is to put forth the hypothesis:

Before analyzing the data, there is the need to put forward the following

hypothesis

Hol b = b = e

Hi: b # b= Ik (At least one of the treatment means differ from the others)

Conc. (M) 10M 20M 30M
Perspex” Perspex” Perspex”

Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4

1 4 5 6 4 5 6 7 8 9 4 5 5

2 5 4 6 4 3 6 7 7 4 6 5 5

3 6 7 7 5 6 6 7 5 5 5 4 7

4 4 7 8 6 4 5 5 6 6 6 4 6

5 7 8 9 4 5 6 7 4 7 7 8 9

EU 26 31 36 23 23 29 33 30 31 28 26 32

Tty 116 115 117
CF 2018
Tt mean 5.8
TSS 123.6
TtSS 0.1
EUSS 34.8
EESS 34.7
SESS 88.8
The second step is calculating of the Correction Factor:
CF = Z(%ST)Z
F= ﬂ =2018.40
©ICNE)
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r= number of replication, t=number of treatment, s=number of samples.
The third step is calculating of the Total Sum of Squares:

TSS = Z((4)2 + (52 +(6)*+ (D)*+ (5)* + (6)*.....+(9)*) - 2018.40 = 123.60

The fourth step is calculating of the Treatment Sum of Squares:

Tt )? (Tty)? (Tt )?
TtSS = Z(( t1) n (Tte2) +( t3))_CF
rs rs rs

2 2 2
TtSS = Z((116) + (115) +(117) )—2018.40

BHEGE BHDG BHOG)

TtSS = Z 2018.5 - 20184 = 0.1

The fifth step is calculating the Sum of Squares among the Experimental
Units:

2 2 2 2
EUSS=Z((EI?) +(EU2) +(EU3) n “(EU12))_CF

S S S

2 2
EUSS = Z((Zi) + (2:) +(351))- 2018.40

EUSS = 2053.2 — 2018.40 = 34.8

The sixth step is calculating the Experimental Error Sum of Squares:
Experimental Error SS(EESS) = EUSS — TtSS
Experimental Error SS (EESS) = 34.8 — 0.1 = 34.70

The seventh step is calculating the Sampling Error Sum of Squares:
Sampling Error SS (SESS) = TSS — EUSS
SamplingError SS(SESS) = 123.60 — 34.80 = 88.8
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The eighth step is completing the ANOVA table:

ANOVA TABLE
Sources of ]
Variations df SS MS Fcal Ferit
Treatment t-1=3-1=2 0.1 0.05 0.013 4.26(5%)
347 3.86 8.02(1%)

(tr-1) - (t-1) = (3x4 -1) 2= 9

Experimental error
88.8

(trs -1) - (tr - 1) = (3x4x5 -1) -9 =50
123.6

Sampling error
trs-1=60-1=59

Total

The seventh step looking up the F-critical Table to the F-critical values:
This follows the earlier procedures used in looking up the critical values from

the F critical Table
Fcrit. or tab. (5%)at df of 2,9 = 4.26

Fcrit. or tab. (1%)at df of 2,9 = 8.02

The eighth step is making the decision or conclusion:
Fcal. (0.013) < (4.26), Fcrit. or tab. (5%)at df of 2,9

Fcal. (0.013) < (8.02), Fcrit. or tab. (1%)at df of 2,9

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01)
level of significance and conclude that the means are not significantly different

based on the data available.

The ninth step is calculating the Coefficient of Variation:

VError MS
%CV = —x
V3.86
%CV = =3 x 100

1.96
%CV = <g X 100 = 33.87

33
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CV =33.87%

Design and Analysis of Variance (ANOVA) with unequal number of
subsamples

Taking for instance a design similar to the previously treated one where this
time around the number of subsamples are unequal as indicated in the table, the
following approach is used in analyzing it.

Conc. (M) 10M 20M 30M
Perspex” Perspex” Perspex”
Thickness (inches) 1 2 3 4 1 2 3 4 1 2 3 4
1 4 5 6 4 5 6 7 8 9 4 5 5
2 5 4 6 4 3 6 7 7 4 6 5 5
3 6 3 7 5 6 7 7 5 5 4 4 7
4 4 5 5 6 4 4 4 6
5 6 5 8 5
TEU 15 12 19 13 18 24 26 26 28 23 26 28
Ttr 59 94 105
CF 1387
Tt mean 5.37
TSS 85
TtSS 7
EUSS 30
EESS 23
SESS 55

The first step in the analysis is to put forth the hypothesis:
Ho: = 1e = e

Hi: b # b= I (At least one of the treatment means differ from the others)
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The second step is calculating of the Correction Factor:

(sum of observations)?

number of observations
_ (258)?
- (48)

66564
F= =

48
The third step is calculating of the Total Sum of Squares:
TSS = Z((4)2 +(5)2+(6)2+ (42 + (5)% + (6)? ... +(5)%) - 1387
TSS = 1472 — 1387 = 85

The fourth step is calculating of the Treatment Sum of Squares:

Tty )?  (Ttp)?  (Ttg)?
TtSS = Z(( t1) n (Tte2) +( tg))—CF
rs rs rs

O ((59)2  (94)2  (105)?
TS = ). <(4)(3) ROION (4)(5)) ~ 1387

TtSS = Z 1394 -1387 = 7

The fifth step is calculating the Sum of Squares among the Experimental Units:

2 2 2 2
EUSS = Z((Elsjl ) 4 (EUz) 4 (EU3) o (EUyz) e
. .

S5 S5 s,

2 2 2
EUSS = Z((li) + (12) + (Zi) )- 1387

EUSS = 1417 — 1387 = 30
EUSS = Sum of Squares Among Experimental Units

TEU = Total treatment on Experiemental Units

The sixth step is calculating the Experimental Error Sum of Squares:

Experimental Error SS(EESS) = EUSS — TtSS
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Experimental Error SS (EESS) = 30 — 7 = 23

The seventh step is calculating the Sampling Error Sum of Squares:
Sampling Error SS (SESS) = TSS — EUSS
SamplingError SS(SESS) = 85 — 30 =55

ANOVA TABLE
- Fcrit. Fcrit
Sources of Variations df SS MS Fcal (5%) (1%)
Treatment t-1=3-1=2 7 35 1.369% 4.26 8.02

Experimental error df(EV) -df(t) = (11-2) =9 23 256 2.5556
Sampling error df(T) - df(EU) = (47 - 11) =36 55
Total Total observ. — 1= (48 -1)=47 85

df(EU)= degree of freedom of experimental unit.
df(T)= degree of freedom of total observation.

The seventh step looking up the F-critical Table to the F-critical values:

This follows the earlier procedures used in looking up the critical values from
the F critical Table

Fcrit. or tab. (5%)at df of 2,9 = 4.26
Fcrit. or tab. (1%)at df of 2,9 = 8.02

The eighth step is making the decision or conclusion:
Fcal. (1.37) < (4.26), Fcrit. or tab. (5%)at df of 2,9
Fcal. (1.37) < (8.02), Fcrit. or tab. (1%)at df of 2,9

We therefore fail to reject the null hypothesis at both 5% (0.05) and 1% (0.01)
level of significance and conclude that the means are not significantly different

based on the data available.
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Abstract

Complete Randomised Design (CRD) is used for experiments in which the
experimental materials or units are homogeneous. However most experimental
materials in life are heterogeneous in nature, hence the need to employ Complete
Randomized Block Designs (CRBD) in designing and analysis of experiments with
such nature. It is the most used of all the types of design, hence this chapter
explains the underlying conditions and how it is used in analyzing experiments

comprehensively for researchers and would-be experiment designers.
Keywords

Block, Homogeneous, Heterogeneous, Analysis, Randomized
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3.1 Introduction

So long as researchers or individuals continue to design experiments to explain
mechanisms, phenomenon etc. using heterogeneous experimental materials, the
Complete Randomized Block Design (RCBD) would be required for analyses.
Whereas Complete Randomized Design (CRD) is used appropriate for the
analysis for experiments which involves the use of homogenous experimental
materials, RCBD is used for experiments that require the use of heterogeneous
materials. Generally when using animals as experimental materials in an
experiment, when they are of the same species, they can be considered as
homogeneous but when they are of different species then they are considered as
heterogeneous. Assuming a researcher wants to use a plot of land to serve an
experimental material for a study which involves the sowing of seeds to ascertain
the germination rate, the plot of land needs to be divided into blocks, because it
cannot be taken as a homogeneous unit due to the variability of nutrients at each
point of the land. Thus the use of RCBD requires that when experimental
materials which are not homogenous are to be used in an experiment, they must
be divided into subgroups which are similar in nature and referred to as blocks or
replicates before the design is employed for its analysis. The import of reducing
the heterogeneous experimental materials to blocks or replicates is to make sure
variations are minimized or reduced as much as possible so that all variations
existing would be due to variability in the treatments applied.

In RCBD, randomization of treatments is done such that every block is restricted
to a single treatment. However it should be noted that based on randomization
designs are partially classified as follows: homogeneity of experimental material —
Complete Randomized Design (CRD); heterogeneity of experimental material —
Randomized Complete Block Design, that is a single restriction of treatment; Latin
Square Design (LSD) and Cross Over Designs, designs with two restrictions of
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treatment; Graeco-Latin Square Design, design with more than two restriction of
treatment allocation; Incomplete Block Design (IBD) includes those not grouped
into replications and those grouped into replications.

With RCBD, there is at least a single restriction of treatments per block, the
treatment are randomly allocated at least once for each replicate or block. Also
treatments are randomized separately for each block and have equal probability
of being allocated to any experimental unit per block or replicate.

3.2 Merits of RCBD over CRD

There is preciseness of RCBD over CRD.

The species or objects experimental materials generally thought to be
homogeneous though it may not be necessarily as they may differ in one way or
the other when carefully examined. This exposes the idea of homogeneity of
material in the case of CRD as a flaw should differences exist between the
experimental materials or units. However the RCBD reduces this flaw as it is
intended to cater for the heterogeneity of experimental materials. As regard
restriction of treatment, there is at least a single restriction, thus is every
treatment is expected to be allocated at least once per block or replicate.

3.3 Hlustration of Randomized Complete Block Design

Assuming a researcher wants to design an experiment to manage waste
materials such coconut fruit waste (shell and fibre), palm nut shells, waste
plastic bottles, waste plastic water sachets and waste plastic packaging bags
through pyrolysis for the recovery of other usable products and by-products. A
design of such nature is to ascertain whether the amount of products such as oil,
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gas or char produced subjected to different treatments (different weights of the
various materials used) on equal weight per weight basis are significant or not.
The design below is an illustration RCBD.

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D]
i
Palm nut shell [B] 1.6 4.8 9.2 14.0
Waste plastic bottles [C] 4.4 9.2 14.4 19.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2
Waste plastic bags [E] 4.1 8.5 11.9 16.9

The table above is a design for five different treatments in terms of weights of
the various waste types being considered in the study. The data being
considered is the weights of the oil generated from these waste types. It should
however be noted that the values fielded in the table are all being assumed for
explanation and not real.

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg [D] TBC')‘;;’I"S
%‘;}Z?F;;&“’ﬁffe;rtjx]s 23 5.0 112 157 342
Palm nut shell [B] 1.6 4.8 9.2 14.0 29.2
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 8.5 11.9 16.9 414
Treatment Totals 16.6 36.4 60 84.1 197.1
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The first step: Stating of hypothesis

For Blocks:

H,: All the means of the blocks are equal

Ha: At least one of the means of the blocks (blK) is different
H,: pblka = pblks = pblke = pblkp = pblke

H,: pblka# pblks = pblke = pblkp = pblke

For Treatments:

H,: All the means of the treatments are equal

Ha: At least one of the means of the treatments (t) is different
Ho: phrta = irtg = pArtc = phrtp = hrte

Hy: prts # g = rte = JArtp = Arte

The second step: Calculating the Correction Factor (CF)

YZ

CF= —
TB

where Y?=square of the sum of all observations

where TB is the product of the number of treatments and number of blocks or
number of replicates (r)when replicates are used rather instead of the blocks
_(234+5+112........+16.9)

- 4%5

_(197.1)2
T 4x5

CF
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P 38848.41
20
CF = 1942.42

The third step: calculating the Total Sum of Squares (TSS)

TSS = ZY& — CF

TSS = 2(2.32 +5.02+11.22 ...+ 16.9%) — 1942.42

TSS = 2513.57 — 1942.42 = 571.15
Y,} is the square of all observations.

The fourth step: calculating the Block Sum of Squares (BLKSS)

BLKSS?
BLKSS = -
nTrt
34.2%2 4+ 29.6% + 47.32... +41.4%
BLKSS = Z Z —1942.42
1169.64 + 876.16 + 2237.29 + ---+ 1713.96
BLKSS = - — 194242
7986.21
BLKSS = —— — — 1942.42

BLKSS = 1996.55 — 1942.42
BLKSS = 54.13

The fifth step: calculating the Treatment Sum of Squares (TRTSS)

TRTSS = TRTSS® CF
B nBLK
16.6% + 36.4% + .....+84.12
TRTSS = Z z — 1942.42
275.56 + 1324.96 + 3600 ... ... ... +7072.81
TRTSS = — 1942.42

5
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12273.33
TRTSS = B 1942.42

TRTSS = 2454.67 — 1942.42
TRTSS = 512.25

The sixth step: calculating the Error Sum of Squares (ERRSS)
ERRSS = TSS — (BLKS + TRTSS)
ERRSS = 571.15 — (54.13 + 512.25)
ERRSS = 571.15 — 566.38
ERRSS = 4.77

Where nTrt =Number of Treatment, nBLK = Number of Blocks.

The seventh step: completing the ANOVA Table

ANOVA TABLE
Sources of Variation df SS MS  Fcal. Fecrit.
block blk-1=5-1=4 5413 1353 33.83
treatment trt-1=4-1=3 512.25 170.75 426.88
error (blk-1)(trt-1) =4x 3 =12 4.77  33.67
total blk xtrt-1=20-1=19 571.15

For block: Fcrit (5%) @ df of 4, 12 = 3.26; Fcrit (1%) @ df of 4, 12 =5.41.
For treatment: Fcrit (5%) @ df of 3, 12 =3.49; Fcrit (1%) @ df of 3, 12 = 5.95.

The tenth step: looking up the F-critical table to find the F-critical values:

For the block:
Fcrit.or tab. (5%)at df of 4,12 =3.26
Fcrit.or tab.(1%)at df of 4,12 =5.41

For the treatment:

Fcrit.or tab. (5%)at df of 3,12 = 3.49
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Fcrit.or tab.(1%)at df of 3,12 =5.95
The eighth step: making the decision or conclusion:

Decision on block:
Fcal.(33.83) > (3.26), Fcrit.or tab. (5%)at df of 4,12
Fcal.(33.83) > (5.41), Fcrit.or tab. (1%)at df of 4,12

At both 5% and 1% levels of significance for the block, we reject the null
hypotheses because the F-calculated values are greater than the F-critical values;
thus we conclude that there is enough evidence provided by the data collected in
the experiment to reject the null hypotheses. It thus implies that the blocks are
significantly different, hence there was a need to block or in other words blocking
can be justified. It means RCBD is the right design adopted for the study.

Decision on treatment:

Fcal.(426.88) > (5.95), Fcrit. or tab. (1%)at df of 3,12

At 1%, since the F-calculated value is greater than the F-critical value, we
reject the null hypothesis and conclude that the data collected provides enough
evidence that the treatments are significantly different.

Fcal.(426.88) > (3.49), Fcrit.or tab.(5%)at df of 3,12

Again at 5% level of significance for the treatment, we reject the null
hypothesis on the basis that the F-calculated value is greater than the F-critical
value and thus conclude that the treatments are significantly different, therefore
the need to find out the treatments that are significantly different.
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3.3.1 Finding the Treatments that are Significantly Different

Once the test reveals that there exist significance differences between the
treatments, we proceed to find out which of the treatments significantly differ.
This procedure of finding out is referred to as the pair comparisons.

Since there are four treatments and we are to do a pair comparison, it
presupposes that we will have C5 i.e. 4 combination 2 which means there would
be 6 paired comparisons possible. These are as follow:

AB, AC, AD, BC, BD and CD. There are two statistical methods used in
doing the pair comparisons, these are namely: the Least Significance Difference
Test (LSD) and the Duncan Multiple Range Test (DMRT).

3.3.2 The Fisher’s LSD Test

With regards to the LSD (Least Significant Difference) test, an LSD value is
calculated at a prescribed level of significance either 5% or 1%, which serves as
a boundary for the classification between whether one treatment is significantly
or not significantly different from another when their means are compared. This
means that if the means difference of any two treatments compared exceed the
LSD computed at a prescribed significance level, then we conclude that the two
treatments are significantly different or otherwise not. It is used or valid when
used for independent (orthogonal) comparison and used when the treatment size
is less i.e. less than six treatments. The generalized version of LSD is given by
the formula:

[ — %]

wms (l + l)

n oo

LSD =
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1 1
However sd = (JWMS2 (—+ —))

noon

Since n; = n;,

sd = ( |WMs? (%))

2WMS?
n

where WMS =Within (Residual or unexplained)Mean Square, n=number of
sample per each treatment or replication; sd=standard deviation.

LSD, = t, xsd

However, t; is used to in order to a two sided hypothesis, therefore
LSD, = tx x sd
2

Taking the example being handled under the RCBD design for instance, we
used the following data:

Treatments (weights of the waste types) to be Pyrolysed

Blocks A B C D

Coconut waste fruits (shell 2.3 5 11.2 15.7
and fibre)

Palm nut shell 1.6 4.8 9.2 14
Waste plastic bottles 4.4 9.2 144 19.3
Waste plastic satchets 4.2 8.9 13.3 18.2
Waste plastic bags 4.1 8.5 11.9 16.9
Treatment Means 3.32 7.28 12 16.82

LSD, = ti xsd
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/ZWMS2
sd =
n

WMS from the ANOVA table = 33.67; n = 4; Error or residual or

unexplained df = 12
2(33.67)?
od = /¥
5
2x1133.89
sd = ’T

2267.79
sd =
5
sd = V453.56
sd = 21.30

We therefore proceed to read the t-critical value from the two-tailed table at
the significance level at which the design revealed that the treatments were
significant (5% or 0.05).

Therefore from the two tailed t-critical at 5% level of significance table we

obtain:

to.os_, ,df 12 of the residual or unexplained = 2.18
72 ~lo.o25

t — crit(two — tailed)at df12 = 2.18
LSD, = 2.18 x 21.30
LSDy o5 = 46.43

The value t-crit (two-tailed) at df 12 can be read from the tgz ty.4o5 Critical

table.

http://www.sciencepublishinggroup.com 51



Basic Concepts and Applications of Experimental Designs and Analysis

o (1 tail) 0.05 0.025
o (2 tail) 0.1 .05
df
1 6.3138 12,7065
2 2.9200 43026
3 2.3534 3.1824
4 2.1319 2.7764
5 2.0150 2.3706
1.9432 2.4469
7 1.8946 2.3646
8 1.8595 2.3060
9 1.8331 22621
10 1.8124 22282
11 1.7959 2.2010

12— 177823—* 2.1788
13 1.7709 2.1604

Means Difference Table

AGa) B,) CGEo) D@&p)
A E) -
B (%) (& — %) -
C(xe) (e — %) (xc —x5) -
D(xp) (xp —xa) (xp —xp) (xp —x¢) -
Means difference table
A (3.32) B (7.28) C(12.00) D(16.82)
A (3.32) -
B(7.28) 3.96 .
C(12.00) 8.68 4.72 -
D(16.82) 135 9.54 4.82 -
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Since all the mean differences for all the treatments are (A, B, C, D) are less
than (<) the LSD value obtained (45.39), hence the LSD test confirms they are
not significantly different.

(g = %4), (¢ — XD, Ocp = %4), (¢ — xp), (xp — Xp),(Xp — X¢) < LSDy 05
The Duncan Multiple Range Test

This test is also used for paired comparisons for a larger treatment size than
the LSD. With the DMRT, the sample means of the treatments are ranked from
the lowest to the highest and then the steps apart denoted by (r) is derived and
used with the total degree of freedom (df) to read the q tabulated value from the
studentized range table.

When using the DMRT, two population means are significantly different if
the absolute value of their sample differences exceed W, where W is defined as
below:

WMS
W = q (r,df of residual or unexplianed) x —

Where n=number of samples or observations per treatment group, r=the
number of steps from the lowest treatment mean to the highest treatment mean
when the treatment means are arranged in ascending order, df=degree of
freedom of the residual or unexplained or error, WMS=within residual or
unexplained or error mean square derived from the ANOVA table.

Arrangement of the treatment means in ascending order to determine the
steps is done as follows:

X =332< x53=728<x; =12.0< X, = 16.82
Since the distance between X, andx, is 4, thus moving from

X4 to Xp is 4 steps thenxp hasr=4,x_ hasr = 3,Xg hasr = 2
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Therefore the table below can be constructed to aid the calculation of W:

XB Xc Xp
r=2 r=3 r=4
q(r, df of error = 12) 3.082 3.773 4.199
wMS 33.67 33.67 33.67
W =q (r,df of error = 12) x |—— 3.082 x /— 3773 x |—— 4199x [—
n 5 5 5
W 7.98 9.77 10.88

The values of g can be read from the critical values of the Studentized Range
(0.05) presented.

Critical Values of the Studentuzed Range (0.05 level)

dfe

2 6.0849 83308 9790 10.8310 117340 12.4345 130266 13.5381
3 4.5007 5909  6.8245 75016 8.0370 84780  BE521  9.1766
4 39265 50403 57p71 62870  6.7065 T.0528 73465  7.6015
5 36354 46p17 520185 56731 60329 63299 65823 68014
6 34605 43390 48956 53049 56285 58953 6.1222 63192
7 33439 41048 46812 50001 53591 56058 58154 59975
8 32612 40410 45PR8 48858 5.1672 53991 55962 57673
9 30991 39485 44149 47554 50235 52444 54319 55947
10 30511 38768 43266 46543 49120 51242 53042 54605

11 30127 3.8]95  42p61 45736 4.8229 50281 52021 53531

v v

12 3.0813 34428 41985 45076 47477 49469 51159 52625
13 30553 37341 41509 44529 46897 48841 50490 51920

14 3.0332 37014 41105 440660 46385 48290 49903 51300
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We can now proceed to conclude based on the computation of the W-value
and the mean difference:

Means difference table

A (3.32) B (7.28) C(12.00) D(16.82)
A (3.32)

B(7.28) 3.96
C(12.00) 8.68 472 -
D(16.82) 13.5% 9.54 4.82

(xg — x4)=3.96<7.98, there is no significant difference between A and B.
(x¢c —x4)=8.68<9.77, there is no significant difference between C and A.

(xc — x5)=4.72<9.77, there is no significant difference between C and B.
(xp — x,)=13.5>10.88, there is significant difference between D and A.

(xp — xp) = 9.54 < 10.88, there is no significant difference between D and B.

(xp —xc) = 4.82 < 10.88, there is no significant difference between D and C.

3.4 Missing Data Handling

There is bound to be some data missing while conducting the experiment
based on accidents such as breakage, death of an animal, spilling of a substance,
destruction of a treatment on the experimental material by any extraneous
subject or object (human or animal). When the experiment is started and these
accidents occur, then the data on some experimental units cannot be obtained
and thus referred to as ‘missing data’. The experiment cannot be halted but
continued and the missing data estimated after the experiment. In order to
estimate the missing data the formula below can be used:
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_(rB+1tT - G)
RGN

where Y;=the missing data value, r=number of replicates or blocks, B=block or
replicate total for block or replicate with the missing data, t=number of treatment,
T=treatment total for treatment with missing data, G = }i; ¥;; = grand total of
experimental units or observation units.

3.4.1 Handling a Single Missing Data

Therefore using the same experiment presented for the RCBD design with
one of the data taken out as a missing data in the table below, the missing data
value is estimated as follows:

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg[D] TBé(tjglks
%‘;}Z?F;;X’ﬁffegrtjx]s 23 5.0 112 157 342
Palm nut shell [B] 1.6 4.8 9.2 14.0 29.2
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 Y 13.3 18.2 35.7
Waste plastic bags [E] 4.1 8.5 11.9 16.9 41.4
Treatment Totals 16.6 27.5 60 84.1 188.2

(rB + tT — G)
r=51t=4,B=446T = 36.4,G = 188.2
_ (5%35.7+4%27.5—188.2)

i G-1D4-1)
v = (178.5 + 110 — 188.2)
v @(3)
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288.5 — 188.2
i1z
1003

i 12
Y; =84

where r=number of replication, t=number of treatments, B=Block or replicate
total with missing data, T=Treatment total with missing data, G= grand total of
all observations.

After the estimation of the missing data, the bias is computed using the
formulae:

[Bo — (t — 1)x]?
tc-1)

_ [35.7 — (4 - 1)8.4]?
b= 4(4-1)

B =

_ [35.7 - (3)8.4]?
v 4(3)
[35.7 — 25.2]2

12

_[105]
1712

_ (110.25)
1= T

B =92

1=

Therefore the estimated bias (8;) = 9.2
Adjustment in the Analysis of using the bias:

When the estimated bias has been computed, the adjustment of the analysis is
done by subtracting the bias value from only the TSS (Total Sum of Squares) i.e.
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[671.15 - 9.2 =561.95] and TrtSS (Treatment Sum of Squares) i.e.
[512.25 -9.2 =503.05]

Once the missing data value is estimated, it can be put in the table in order to
complete the ANOVA table. It must however be noted that one df (degree of
freedom) is lost from the error i.e. [((5-1)(4-1) — 1) = (12 -1) = 11] and also the
total degrees of freedom because of one missing data. Therefore the ANOVA
would look as below:

Complete Anova Table

Sources of Variation df SS MS Fcal. Fcrit.
Block blk-1=5-1=4 54.13 13.53 31.21
Treatment trt-1=4-1=3 503.05 167.68  386.69
Error (blk-1)(trt-1) -1 =[4x 3]-1=11 477 0.43
Total blk x trt —1-1 =20-1-1=18 561.95

From the ANOVA table, the decisions to be taken on the blocks and
treatments remains the same, after the missing data had been computed and the
ANOVA table completed for the data.

58 http://www.sciencepublishinggroup.com



Chapter 3 Complete Randomised Block Design

3.4.2 Handling More than One Missing Data Under RCBD

Assuming there are more than one missing data or values to be estimated under
the RCBD, how this can be done is explained using the RCBD table below:

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg[D] E(')‘t’glks
%%Z‘;F:;é’vgﬁfegrt‘:f Yis 5.0 11.2 15.7 31.9
Palm nut shell [B] 1.6 4.8 9.2 You 15.6
Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 85 Vi3 16.9 29.5
Treatment Totals 14.3 36.4 48.1 70.1 168.9

From the above table, it can be seen that three data values (Y1, Y24 and Yy3)
are conspicuously missing and which must be estimated in order to complete

the table for the analysis of the data recorded.

The first procedure adopted in estimating the values is to use the formula given
below to find the average estimated values of the missing data in the design:

T, +B
Yij:M

This formula can apply only to RCBD when estimating average missing data.

Where Y;; =estimated average missing data value, T, =the mean value of
treatment with the missing data, B, =the mean value of treatment with the

missing data.

Thus applying this formula, one can obtain the estimated average values of

the missing data: Y;1, Y54 and Y,3.
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(T, + B,)
Ko
T, +B
ForYy = M
2
14.3 31.9
Tm = T = 2.86, Bm = Tz 7.98
_ (2.86 + 7.98) _ 10.84 — 42
1 = 2 - 2 7
T, +B
ForYy, = M
2
70.1 15
_ (14024375 1777 _
24 = 2 - 2 7
T, +B
ForYy = M
2
48.1 29.5
Tm = T = 962,Bm = T =7.38
(9.62 + 7.38) 17.0

43 — 2 2

Now that we have estimated the averages of missing data for
Y11, Y24 and Y,3, two of these estimated values can be substituted into the table
for the formula given below to be used:

v _(rB+tT—G)
T r-DE-1

for computing the estimated values of each of the missing data in turns, and
replacing the average estimated values with the new computed values until no
change in the new computed values occur. When no change occurs in the
estimated values, it means the accurate missing data values have been found.

Using the stated procedures, we proceed to apply them.
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Complete the table with the average estimated values (italicized in the table)
leaving only the one whose estimated value one wants to determine first and in

this case we start with Y,

Treatments (weights of the waste types) to be Pyrolysed

Blocks Block
10 kg [A] 20kg [B] 30kg [C] 40kg [D] Totals
Coconut waste fruits 31.9
(shell and fibre) [A] Y1 a e Ly
Palm nut shell [B] 1.6 4.8 9.2 8.89 24.49
Waste plastic bottles 44 9.2 14.4 19.3 47.3
[C]
Waste plastic satchets 49 8.9 133 18.2 44.6
(D]
Waste plastic bags [E] 4.1 8.5 8.50 16.9 38.0
Treatment Totals 14.3 36.4 56.6 78.99 186.29

Compute for the estimated value of Y;; using the formula given as:

_(@B+tT-G)

Y=o De-
_ (5(31.9) + 4(14.3) — 186.29)

te G-DE-1
v, = ((159.5 + 57.2) — 186.29)
@B
v, = (216.70 — 186.29)
12
Y1 = 3041 =253
12

Therefore substitute the value of Y;; = 2.53 into the table and compute for

the estimated value of the next missing data, Y,,. The new table is given below:
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Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg [D] TB(';t’;IkS
%%Z?FL‘EZ???JTXT 2.53 5.0 112 157 34.43
Palm nut shell [B] 1.6 4.8 9.2 N 15.6
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 41 8.5 8.50 16.9 38.0

Treatment Totals 16.83 36.4 56.6 70.1 179.93

v = (rB +tT — G)
YT r-DE-1
_ (5(15.6) + 4(70.1) — 179.93)
o G-DG@-1
_ (5(15.6) + 4(70.1) — 179.93)
o ®3)
((78 + 280.4) — 179.93)
24 = 12
((358.4 — 179.93)
24 = 12
178.47
Yo = 12

= 14.87

The estimated missing data value for Y,, = 14.87. This value is then be
substituted into the table for the subsequent estimation of the value for the

missing data (Y;3).
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Treatments (weights of the waste types) to be Pyrolysed

Block
Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] Totals
Coconut waste fruits
(shell and fibre) [A] 2.53 5.0 11.2 15.7 34.43
Palm nut shell [B] 1.6 4.8 9.2 14.9 30.47
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 41 8.5 Y3 16.9 295
Treatment Totals 16.83 36.4 48.1 84.97 186.3
_(rB+tT-G)
T r-De-1
_ (5(29.5) + 4(48.1) — 186.3)
B G-DA-1)
Vi = ((147.5 + 192.4) — 186.3)
* ®H3)
_ (339.9 — 186.3)
43 = 12
_ (339.9 — 186.3)
43 = 12
(153.6)
Yi3 = =12.
43 12 8

The estimated value for the missing data Y;3 = 12.8. This is therefore
substituted in the table and the value of the first estimated value Y;; taken out
from the table and freshly computed for to ascertain whether the value will

change or not.
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Treatments (weights of the waste types) to be Pyrolysed

Block
Blocks 10 kg [A] 20kg [B] 30kg [C] 40kg [D] Totals
Coconut waste fruits
(shell and fibre) [A] Y11 L 12 2l )
Palm nut shell [B] 1.6 4.8 9.2 14.9 30.47
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 85 12.8 16.9 42.3
Treatment Totals 14.3 36.4 60.9 84.97 196.57
_(rB+1tT -G)
NCEEVICEE))
_ (5(31.9) + 4(14.3) — 196.57)
e G-1DE-1)
_ ((159.5 + 57.2) — 196.57)
11 — 12
(216.70 — 196.57)
11 12
2013 L7
12

Since Y;; has changed from 2.53 to 1.7, it means one must continue

computing until constant values are obtained.

So we continue to compute for Y,, by replacing the value of Y;; = 1.7

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A] ~ 20kg[B]  30kg[C]  40kg[D] ik
((:S‘;]‘;‘I’Ir‘;;(‘j"’gsbtfegrtj:]s 17 5.0 112 157 336
Palm nut shell [B] 1.6 4.8 9.2 You 15.6
Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 8.5 12.8 16.9 423
Treatment Totals 16.0 36.4 60.9 70.1 183.4
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v _ (rB+1tT - G)
P r-1D(t-1

_ (5(15.6) + 4(70.1) — 183.4)

e G-DE-1
((78 + 280.4) — 183.4)
You =
@ @3)
_ (3584 —183.4)
24 — 12
Y, = > = 14.58
24 — 12 - .

The new value for Y;, = 14.58, which has also changed from 14.9 to 14.58,

so we substitute this value in the table:

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg [D] Eé‘:;:;
%%Z?Fg;(‘j’vﬁﬁfe;rt‘:]s 17 5.0 11.2 157 336
Palm nut shell [B] 1.6 4.8 9.2 14.58 30.18
Waste plastic bottles [C] 44 9.2 14.4 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 8.5 Vi3 16.9 29.5

Treatment Totals 16.0 36.4 48.1 84.68 185.18

_(@B+tT-G)

Y=o De-
_ (5(29.5) + 4(48.10) — 185.18)

B G-DHA-1
Y, = ((147.5 + 192.4) — 185.18)
@B
_ (339.9 — 185.18)
43 — 12
Yy3 = % =129
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Therefore the missing data for Y,; = 12.89, which is change from 12.8 to

12.9 appropriately equal.

We proceed to compute for the Y;; by substituting the value of Y,; = 12.9

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg[D] ook
((:S%Ce‘l’rg;;"ﬁﬁfegrt‘:]s Yy 5.0 112 157 31.9
Palm nut shell [B] 1.6 4.8 9.2 14.58 30.18
Waste plastic bottles [C] 4.4 9.2 14.4 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 8.5 12.9 16.9 424

Treatment Totals 14.3 36.4 61 84.68 196.38

_(rB+1tT - G)
GRS ICEE)

_ (5(31.9) + 4(14.3) — 196.38)

e G-D@-1)
v, = ((159.5 4+ 57.2) — 196.38)
“3)
v, = (216.7 — 196.38)
12
20.32
== 1.7

Therefore Y;; = 1.7, This value equals the previous hence suggest the right
value for Y;; = 1.7, we then check for Y,, to see whether the estimated missing
value remains the same as the previous value computed by substituting the

Value Yll = 17
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Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg[D] E(')‘t’glks
%%Z‘;F:;é"’gﬁfegrt‘ﬁ 17 5.0 112 157 336
Palm nut shell [B] 1.6 4.8 9.2 Y24 15.6
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 85 12.9 16.9 42.4
Treatment Totals 16 36.4 61 70.1 183.5

v _(rB+tT—G)
T r-DE-1

_ (5(15.6) + 4(70.1) — 183.5)

o G-1D@-1)
_ (5(15.6) + 4(70.1) — 183.5)
“ 3
((78 + 280.4) — 183.5)
24 = 12
((358.4 — 183.5)
24 = 12
1749
Y24=( 12 ) = 14.58

Since the value of the missing data Y,, = 14.58, same as the previous
computed value for Y. It thus confirms that all the missing data values have
been accurately estimated hence the table can now be completed and used for
the Analysis of Variance (ANOVA).
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Thus the completed table is shown below:

Treatments (weights of the waste types) to be Pyrolysed

Blocks 10kg[A]  20kg[B]  30kg[C]  40kg[D] E(')‘t’glks
%S%Z?F;;é’vﬁﬁfe;rt‘:]s 17 5.0 112 157 336
Palm nut shell [B] 1.6 4.8 9.2 14.58 15.6
Waste plastic bottles [C] 4.4 9.2 144 19.3 47.3
Waste plastic satchets [D] 4.2 8.9 13.3 18.2 44.6
Waste plastic bags [E] 4.1 8.5 129 16.9 424
Treatment Totals 16 36.4 61 70.1 183.5
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Abstract

The Latin Square Design (LSD) is one of the known experimental designs used
in analysis designed experiments. Though this design exists, most researchers are
unfamiliar with its usage. The prime aim of analysis experiment using the various
known experimental designs is to reduce error as much as possible, or eliminate
them altogether. This paper thus explain the concept of how the LSD is used for
analysing experiment as well as how it helps to reduce errors due to the

differences that exist in two directions (rows and columns) often referred to as

double blocking.
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4.1 Introduction

In an RCBD, blocking is used to place all treatments in groups that are
similar or homogenous so as to reduce the error due to variations as much as
possible among the various treatments being handled. In RCBD there is single
blocking adopted — only treatments are blocked. However with the Latin Square
Design (LSD) blocking is done — blocking by row and column. The LSD is set
such that each treatment is found in both a row and a column. Thus the design
typically assumes a square shape. The number of experimental units is denoted
by n? where n is the number of treatments or blocks or replications. It
presupposes that in LSD, the number of blocks or replication used must be
equal to the number of treatments being handled in order for each treatment to
be found in the each block.

If a researcher needs to analysis an experiment using the Latin Square Design,
the treatments must be arranged in the rows and columns in such a way that the
major sources come from them.

Below are the types of LSD, and they are limited by the number of treatments.

3 X3LSD
C
B A
B
4X4 LSD
A B C D
B A D C
Cc D A B
D C B A
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5X5 LSD
A B C D E
B A E © D
C D A E B
D E B A ©
E © D B A

It can be seen from the designs above that the treatments are all arranged in
such a way that each column and row contain all the treatments be experimented
on. Thus the number and type of treatments in a row are equal to those in a
column.

Assuming a researcher wants to extract milk from five different plants such
Tiger nut (T), coconut (Co), soyabean (So), cashew nut (Ca) and shea nut (Sh)
to ascertain whether there are significance differences between the volume of
milk in cubic centimetres that can be extracted from a kilogramme of each of
the fruits; the following 5 x 5 Latin Square Design can be drawn:

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5
Row1 T=53 Co=5.0 Ca=41 So=3.9 Sh=33
Row2 Co=55 T=50 Sh=31 Ca=39 So=4.1
Row3 Ca=3.9 So=23.6 T=49 Sh=24 Co=59
Row4 So0=4.2 Sh=29 Co=6.0 T=45 Ca=42
Row5 Sh=31 Ca=428 S0=4.0 Co=54 T=5.6

The first step: Stating of hypothesis

For Treatments:

H,: All the means of the treatments are equal
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Ha: At least one of the means of the treatments (t) is different
Ho: Mrts = |Artg = Artc = [Urtp = |rte

Hy: phrts # At = [Artc = pirtp = pArte

For Columns:

H,: All the means of the Columns (C) are equal

Ha: At least one of the means of the Columns (C) is different
Ho: C1 = C2 = C3 = C4 = |C5

Hy: PC1# C2 = IC3 = LC4 = LC5

For Rows:

H,: All the means of the Rows (R) are equal

Ha: At least one of the means of the Rows (R) is different
Ho: PR1 = PR2 = LR3 = R4 = LR5

Hi: PR1# R2 = LR3 = LR4 = LR5

The second step: Calculating the Correction Factor (CF)

n
GT = Z (T, Co,Ca,So,Sh) = sum of all observations on experimental units

=1, =1
n=>5
GT = Z (53 +5.0+...5.6) = 108.6
i=1,=1
(GT)?
CF =
N
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. (108.6)>  11793.96

58 e =471.76

where GT= grand Total, N=total number of observation, CF=Correction factor.

The third step: Calculating the Total Sum of Squares (TSS)

n=>5
1SS = Y [+ (€0 + o (Tss)?] = CF
=1, =1
n=>5
1SS = ) (537 + (500 + ..(5.6)"] - 47196
i=1)=1

TSS = 494.74 — 471.96 = 22.98

CT 22 21.3 221 20.1 23.1 108.6
RT 21.6 216 20.7 21.8 22.9 108.6
Tt 53 5 4.9 4.5 5.6 253
Cor 55 5 6 54 59 27.8
Car 3.9 4.8 4.1 3.9 4.2 20.9
Sor 4.2 3.6 4 3.9 4.1 19.8
Shr 3.1 2.9 3.1 24 3.3 14.8

The fourth step: Calculating the Treatment Sum of Squares (TrtSS)

Z((TT)Z + (Cor)* + (Car)® + (Sor)? + (Shr)?
t

Trt SS = ) — CF

2 2 2 2 )
Trt SS = Z((ZSB) + (27.8)° + (20.9)° + (19.8)° + (14.8) -

5
471.96

640.09 + 772.84 + 436.81 + 392.04 + 219.04
Trt SS = Z ( z

) —471.96

2460.82
Trt SS = Z(T) 47196

Trt SS = 492.16 —471.96 = 20.41

http://www.sciencepublishinggroup.com 75



Basic Concepts and Applications of Experimental Designs and Analysis
where t=number of treatments, Tr=Treatment T total, Shy=Treatment Sh total,
Cor=Treatment Co total, Car=Treatment Ca total, Sor=Treatment So total.

The sixth step: Calculating the Rows Sum of Squares (RSS)

RSS = z((er)z + (R27)* + (R37)* + (R47)* + (R57)?

2 ) — CF
21.6)% 4 (21.6)% + (20.7)2 + (20.1)% + (23.1)2
RSS=Z(( )"+ (21.6) (5) (20.1)% +( ))_471_96
466.56 + 466.56 + 428.49 + 475.24 + 524.41
RSS = Z( - ) — 471.96
2361.26
RSS = Z( =) - 47196

RSS = 472.25 - 471.96
RSS = 0.49

where R=number of rows, R1;=Treatment Row 1 total, R2;=Treatment Row 2
total, R3:=Treatment Row 3 total, R4;=Treatment Row 4 total, R5;=Treatment
Row 5 total.

The seventh step: Calculating the Column Sum of Squares (CSS)

cSS = Z((61T)2 +(€C27)? + (€37)? + (C41)? + (C57)?

- ) — CF
2 2 2 2 2
css Z((ZZ) +(21.3)% + (22.1)% 4 (20.1) + (23.1) ) 47196
R
Css Z((484) + (453.69) + (488.:1) + (404.01) + (533.61)) 47196
2363.72
€SS = Z( o) —471.96

CSS = 472.74 — 471.96
€SS = 0.99
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where C=number of rows, Cli=Treatment Column 1 total, C2;=Treatment
Column 2 total, C3r=Treatment Column 3 total, C4;=Treatment Column 4 total,
C5;=Treatment Column 5 total.

The eighth step: Calculating the Error Sum of Squares (ESS)
ESS = TSS — (TrtSS + RSS + CSS)
ESS = 22.98 — (20.41 + 0.49 + 0.99)
ESS = (22.98 — 21.89)
ESS = 1.1

where ESS= Error Sum of Squares or unexplained sum of squares.

The ninth step: Completing the ANOVA table

ANOVA TABLE
Sources of Variation df SS MS  Fcal. Fcrit. (5%)
Treatment t-1=5-1=4 20.41 5.1025 46.39 3.48
Row R-1=5-1=4 0.49 0.1225 1.11 3.48
Column C-1=5-1=4 0.99 0.2475 2.25 3.48
[C xR -1] —[(t-1)+(R-1)+(C-1)]
Error =24-16 =10 1.1 011
Total (CXR)-1=25-1=24 22.98
Fcrit (5%) @ df of 4,10 =3.48
Fcrit (1%) @ df of 4,10 =5.99

Tenth step: looking up the F-critical table for the critical values
Ferit(1%)at df of 4,10 for Treatments = 5.99
Ferit(1%)at df of 4,10 for Rows = 5.99
Fcrit(1%)at df of 4,10 for Columns = 5.99
Ferit(5%)at df of 4,10 for Treatments = 3.48
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Ferit(5%)at df of 4,10 for Rows = 3.48
Ferit(5%)at df of 4,10 for Columns = 3.48

These values for the treatments, rows and columns can be obtained from the
F-critical tables below and the values highlighted.

Critical values of F for the 0.05 significance level:
1 2 3 4 5 6
16145 19950 21571 22458 23016 23399
18.51 19.00 19.16 1925 1930 19.33
1013 9.55 9.28 912 9.01 8.94
771 694 659 639 626 616
6.61 579 5.41 519 5.05 495
599 514 476 453 439 428
559 474 435 412 397 387
532 4.46 4.07 3.84 3.69 358
512 426 386 363 348 337
10 497 410 3.7 348 333 322
11 484 3.98 3.59 3.36 320 310
12 475 3.89 349 3.26 3.1 3.00
13 467 3.81 34 318 3.03 292
14 4 60 374 334 31 296 285

O 00~ AWK =

Critical values of F for the 0.01 significance level:

1 2 3 4 5 6
1]405219 499952 540334 562462 576365 5858.97
2| 9850 9900 9917 9925 9930 9933
3| 3412 3082 2946 2871 2824 2791
4 2120 18.00 16.69 1598 1552 15.21
5
6
7
8

16.26 13.27 12.06 11.39 1097 1067
13.75 10.93 9.78 9.15 8.75 8.47
1225 955 8.45 785 746 719
11.26 8.65 7.59 7.01 6.63 6.37

9 10.56 802 6.99 6.42 6.06 580
10 10.04 7.56 6.55 2.99 5.64 5.39
1 965 721 6.22 567 532 5.07
12 933 693 585 541 5.06 482
13 .07 6.70 574 521 4.86 462
14 8.86 6.52 5.58 5.04 470 4.46

Eleventh Step: Making the decisions and Conclusions.

Treatments

Fcal (4,10) = 46.39 > Fcrit (3.48) at 5%
Fcal (4,10) = 46.39 > Fcrit (5.99) at 1%

Since the F-calculated value (46.39) for the treatments at both 1% and 5%
level of significance respectively are greater that the F-critical value (5.99) and
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(3.48), the null hypothesis is rejected on the grounds that there is enough
evidence to suggest that there is significant difference between the treatments.
Hence we fail to reject the alternate hypothesis.

Columns

Fcal (4,10) = 2.25 < Fcrit (3.48) at 5%
Fcal (4,10) = 2.25 < Fcrit (5.99) at 1%

F calculated value (2.25) for the columns at both 1% and 5% level of
significance respectively lesser than the f critical value (3.48) and (5.99), we fail
to reject the null hypothesis and say there is no significant difference in the
columns, hence no justification for blocking by columns.

Rows
Fcal (4,10) = 1.11 < Fcrit (3.48) at 5%
Fcal (4,10) = 1.11 < Fcrit (5.99) at 1%

F calculated value (1.11) for the rows at both 1% and 5% level of
significance respectively lesser than the F-critical value (3.48) and (5.99), we
fail to reject the null hypothesis and say there is no significant difference in the
rows, hence no justification for blocking by rows.

Since there is no justification for blocking by rows and columns, it presupposes
that the LSD is not the right design for the experiment in question. Since the
treatments are significantly different, there is the need to perform the Lsd (Least
significance difference) test or the Duncan Multiple Range Test (DMRT).

Handling Missing Data under Latin Square Design (LSD).

In every experimental design data can be missing destruction or damage of
living things being used as experimental materials, improper allocation of
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treatments, loss of materials due to harvesting and processing of materials and
illogical data that cannot be considered as reliable results due to how extreme
the values are.

For single missing data under the LSD, the formula below can be used:

- )

Xo=missing data observed, Ro=total observed row values with missing data,
Co=total observed column values with missing data, To=total observed
treatment values with missing data, Go=grand total of all observed value,

t=number of treatments.

Formula for the Computation of Bias Value

[Go —Rp — Cop — Tp(t — D]?
[(t—D(-2))?

Bo =

o= bias value

For adjustment of the analysis based on the estimation of the missing data the
following is done

1. The value one (1) is substracted from the total degree of freedom and the
unexplained or error degree of freedom.

2. The biased value must be computed and subtracted from the Total Sum of
Squares and Treatment Sum of Squares and not that of the column and the

row.
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Taking the 5 x 5 LSD table below, the missing that can be computed for as
follows:

5X5 LSD
Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5
Rowl T=53 Co=5.0 Ca=41 So=39 Sh =33
Row?2 Co=Yy T=50 Sh=31 Ca=39 So=4.1
Rows3 Ca=3.9 So=23.6 T=49 Sh=24 Co=59
Row4 So=4.2 Sh=29 Co=6.0 T=45 Ca=4.2
Row5 Sh=3.1 Ca=438 So=4.0 Co=54 T=5.6

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4  Column5 Row Total

Rowl T=53 Co=50 Ca=41 S0=39 Sh=33 216
Row? Co=Y, T=50 Sh=31 Ca=39 So=41 16.1
Row3 Ca=39 S0=36 T=49 Sh=24 Co=59 207
Row4 So=42 Sh=29 Co=60 T=45 Ca=42 218
Row5 Sh=31 Ca=48 S0=40 Co=54 T=56 22.9

Column Total 165 213 221 20.1 23.1 103.1

To (CO) = Colz + C035 + C043 +C054
T,(Co) = 5.0 + 6.0 + 5.4 + 5.9 = 22.3

n=5
G, = Z Y, =Yy, + Y+, Y5 = 5.3+ 5.0+...5.6 = 103.1
ij

Ro = YZZ + Y23 +...Y25 = 50 + 31 + 39 + 4.1 = 161

N O s ra|
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- [<5(16.1 +16.5 4 22.3) — 206.2))]

G-1DG-2)
v — [<5(54.4)1 2— 206.2>]
v, = [(274.51—2206.2)]
% =[5
X, = [5.69]

The bias is now computed using the formula:
[Go —Rp — Co — To(t — D]?
[(t =1 —2)]°
_ [103.1-16.1—-16.5—22.3(5 - 1)]?
o [(5-DG-2)P
[103.1 — 16.1 — 16.5 — 22.3(4)]?
" ()P

_ [103.1-16.1—16.5 — 89.2]?
- [12]?

Bo =

Bo
_ [-18.7]°
VIE

_ [349.69]2
07 [144]2

_ [349.69]
7 [144]

By = 2.43

Now the table can be completed with the estimated missing data in order to
do the Analysis of Variance (Anova) table
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5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3  Column4  Column5 Row Total
Rowl T=53 Co=5.0 Ca=4.1 S0=3.9 Sh=3.3 216
Rowz2 Co =5.69 T=5.0 Sh=31 Ca=3.9 So=4.1 21.79
Row3 Ca=39 So=3.6 T=49 Sh=24 Co=5.9 20.7
Row4 S0=4.2 Sh=2.9 Co=6.0 T=45 Ca=42 218
Row5 Sh=31 Ca=438 S0=4.0 Co=54 T=56 22.9
Column Total 22.19 21.3 22.1 20.1 23.1 108.79
CT 22.19 21.3 221 20.1 231 108.79
RT 21.6 21.79 20.7 21.8 229 108.79
Tt 5.3 5 4.9 4.5 5.6 25.3
Cor 5.69 5 6 5.4 5.9 27.99
Car 3.9 4.8 4.1 3.9 4.2 20.9
Sot 4.2 3.6 4 3.9 4.1 19.8
Shy 3.1 2.9 3.1 24 3.3 14.8

The first step: Stating of the Hypothesis.

The hypothesis stated remains the same.

The second step: Calculating the Correction Factor (CF)

GT = er'l:l,jzl(T' Co,Ca, So,Sh) = sum of all observations on experimental

units

n=

5

GT = Z (53 + 5.0 +...5.6) = 108.79
i=1,=1

o (108.79)  11835.26

CF
N

_(GTY?
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where GT= Grand Total, N=total number of observation, CF=Correction factor.

The third step: Calculating the Total Sum of Squares (TSS)

n=>5
1SS = Y [+ (€01 + o (Tss)?] = CF
=1, =1
n=>5
1SS = ) [(53) + (50 + ...(5.6)*] - 47341
i=1,=1

TSS = 496.87 — 473.41 = 23.46

The fourth step: Calculating the Treatment Sum of Squares (TrtSS)

Z((TT)Z + (Cor)* + (Car)* + (Sor)? + (Shr)?

Trt SS = : ) = CF
25.3)2 + (27.99)2 + (20.9) + (19.8)2 + (14.8)?
TrtSSzZ(( )" +(27.99) (5) (198)” +( ))—473.41
640.09 + 783.44 + 43681 + 392.04 + 219.04
Trt SS = Z ( - ) — 47341
247142
Trt SS = Z( =) - 47341

Trt SS = 494.28 — 473.41 = 20.87

where t=number of treatments, Ty=Treatment T total, Shy=Treatment Sh total,

Cor=Treatment Co total, Car=Treatment Ca total, So;=Treatment So total.

The sixth step: Calculating the Rows Sum of Squares (RSS)

RSS = z((RlT)2 + (R27)? + (R37) + (R41)* + (R57)?

—CF
R )¢
21.6)% + (21.79)% + (20.7)2 + (21.8)2 + (22.9)?
RSS=Z(( )*+( ) (5) (21.8)° + ( ))_473_41
466.56 + 474.80 + 428.49 + 475.24 + 524.41
RSS = Z( = ) —473.41
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2369.50
RSS = Z( o) — 47341

RSS = 473.90 — 473.41
RSS = 0.49

where R=number of rows, R1;=Treatment Row 1 total, R2;=Treatment Row 2
total, R3;=Treatment Row 3 total, R4;=Treatment Row 4 total, R5;=Treatment
Row 5 total.

The seventh step: Calculating the Column Sum of Squares (CSS)

css = Z((sz + (€20)* + (€31)° + (C47)° + (C51)°

- )= CF
22.19)2 + (21.3)2 + (22.1)2 + (20.1)2 + (23.1)?

CSS=Z(( )" +(21.3) (R )" +(20.1)" +( ))_473_41
492.40) + (453.69) + (488.41) + (404.01) + (533.61
CSS=Z(( )+ ( )+ ( . )+ ( )+ ( ))_473.41
2372.12
CSS = Z( =) - 473.41

CSS = 474.42 — 473.41
€SS = 1.01
where C=number of rows, Cl;=Treatment Column 1 total, C2;=Treatment

Column 2 total, C3r=Treatment Column 3 total, C4;=Treatment Column 4 total,

C5¢=Treatment Column 5 total.

The eighth step: Calculating the Error Sum of Squares (ESS)
ESS = TSS — (TrtSS + RSS + CSS)
ESS = 23.46 — (20.87 + 0.49 + 1.01)
ESS = (23.46 — 22.38)
ESS = 1.1
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where ESS=Error Sum of Squares or unexplained sum of squares.

The ninth step: Making the necessary Adjustments in the Analysis and
Completing the ANOVA table

Making the necessary Adjustments in the Analysis
The following adjustments must be done in completing the Anova table:

1. Deduct the value (1) from the total degree of freedom and the unexplained
or error degree of freedom

2. Subtract the computed bias from the Total Sum of Squares (TSS) and
Treatment Sum of Squares (TrtSS)

Adjustments
Totaldf =[CxR]—1-1=25-1—1= 23
Unexplained or error = [CxR —1]-[t— 1D+ R-1+(C-1)] -1
=24-16—-1 =9
Adjusted TSS = 23.45 — B,
where [, = 2.43

Adjusted TSS = 23.45 — 2.43 = 21.02
Adjusted TrtSS = 20.87 —

Adjusted TrtSS = 20.87 — 2.43 = 18.44

86 http://www.sciencepublishinggroup.com



Chapter 4 Latin Square Design

ANOVA TABLE
Sources of Variation df SS MS Fcal.  Fcrit. (5%)
Treatment 4 18.44 4.61 38.78 3.63
Row 4 0.5 0.13 1.05 3.63
Column 4 1.01 0.25 212 3.63
Error 9 1.07 0.12
Total 23 21.02
Fcrit (5%) @ df of 4,9 3.63
Ferit (1%) @ df of 4,9 6.42

Tenth step: looking up the F-critical table for the critical values
Fcrit(1%)at df of 4,9 for Treatments = 6.42
Fcrit(1%)at df of 4,9 for Rows = 6.42
Fcrit(1%)at df of 4,9 for Columns = 6.42
Ferit(5%)at df of 4,9 for Treatments = 3.63
Ferit(5%)at df of 4,9 for Rows = 3.63
Fcrit(5%)at df of 4,9 for Columns = 3.63

The Eleventh step: Making the Decision and Conclusions

The values obtained from the F-critical table compared with the F-values
calculated for the Treatments, Rows and Columns reveals the decisions and
conclusions remain the same as the table without the missing data. This proves
the missing data value has been accurately estimated.

4.2 Handling More than One Missing Data Under LSD

The procedure is the same as done in the case of RCBD but the formula for
estimating the missing data values differ. For LSD, the following formula are
used:
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(T + Cn + Rin)
ij = f

This formula can apply only to LSD when estimating average missing data

where Yj=estimated average missing data value, T,=the mean value of
treatment with the missing data, C,,=the mean value of Column with the missing

data, R,=the mean value of Row with the missing data.

(e

Yij=missing data observed, Ro=total observed row values with missing data,
Co=total observed column values with missing data, To=total observed
treatment values with missing data, Go=grand total of all observed value,
t=number of treatments.

[Go —Ro — Co — To(t — D]?
[(t —D(t —2)]?

Bo =

o= bias value

For example to compute for the missing data under LSD as seen in the table

above, the approach below is used:

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5 Row Total

Rowl T=53 Co=50 Ca=41 S0=39 Sh=33 21.6
Row2 Co=569 T=50 Sh=31 Ca=39 So=41 21.79
Row3 Ca=39 S0=36 T=49 Sh=24 Co=VYs; 14.8
Row4 So=42 Sh=29 Co=60 T=45 Ca=42 21.8
Row5 Sh=31 Ca=Ys, S0=40 Co=54 T=56 18.1
Column Total ~ 22.19 16.5 221 20.1 17.2 98.09
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We first find the average estimated missing data using the formula:
(Tn + C + Ryp)
T3

_ (Tm+Cn+Rm)

ForYs, = 3
o _IVutYnpt¥n+V, 165
mo 5 5
Yoi + Yer + Yoy + Y 18.1
R = 25y + Vo3 + Yoy + Vs _ — 362
5 5
Y5+ Y3+ Vo + Vs
T, =
5
_ZB9+41+39+42) 161,
m - 5 - 5 .
(322+3.3+ 3.62) 10.14
Yo, = = ~ 338
3 3
For ¥,s = (Tm+c,2n+Rm)
Yie +Yoc +Yie + Y- 17.2
c. =Z 15+ ¥os + Va5 + Y55 — 344
5 5
Y. + Y3, + Y5 + Y- 14.8
R, = Y5+ Yo + Y3+ Y5y _ — 296
5 5
Yy, +Vip + Vs + Yoy 569 +5.0 +6.0 + 5.4
- - =442
5 5
(442 + 344+ 296) 10.82
Yag = - = —— =361

Since the estimated average values of the missing data Y5, and Y35 have been
computed, the values of each of this missing data can now be estimated by
completing the table with one of the average estimated value where finding the

estimated value of the other one.
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5X5 LSD

Milk Extracted in cm®kg of treatment

Columnl Column2 Column3 Column4 Column5 Row Total

Rowl T=53 Co=5.0 Ca=41 S0=39 Sh=33 21.6
Row2 Co =5.69 T=50 Sh=31 Ca=39 So=41 21.79
Row3 Ca=3.9 So0=3.6 T=49 Sh=24 Co=361 14.8
Row4 So0=42 Sh=29 Co=6.0 T=45 Ca=4.2 21.8
Row5 Sh=31 Ca=Ys, So0=4.0 Co=54 T=56 18.1
Column Total 22.19 16.5 22.1 20.1 20.81 101.7

In order to estimate the value of Ys,, the average estimated value of Y35 is
substituted in the table as seen.

O e ra

Rp = Ye + Yeg+...+Yss
Ry =31+40 +54 +56= 18.1
Co=VYip+ Yopt...+Ys,
Co=50+50+36+29=165
To(Ca) = Ys; + Yez+...+Yss

Tp(Ca) =39+ 41+39 +4.2=16.1

v, = [(5(18.1 + 1(2.5:;)1(21_)2—)2(101.7) )]

v, = [(5(50.(72);503.4 )]

253.5 — 203.4
¥ = [( 12 )]

= [

YSZ = [418]
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To compute the estimate for Y35, substitute the value of Y5, = 4.18 into the
table as shown:

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5 Row Total

Rowl T=53 Co=50 Ca=41 S0=39  Sh=33 21.6
Row2 Co=569 T=50 Sh=31 Ca=39 So=41 2179
Row3 Ca=39 S0=36  T=49  Sh=24 Co=VYsy 14.8
Row4 So=42 Sh=29 Co=60 T=45 Ca=42 21.8
Row5 Sh=31 Ca=418 S0=40 Co=54 T=56 22.28

Column Total ~ 22.19 20.68 221 20.1 17.2 102.27

Ty

Ry =Ysy + Yopt... +Vz4
Ry=39+36+49+24=148
Co =Yis + Yos+...+Yes
Co=33+41+42+56=172
To(Ca) = Yoy + Yip+...+Ys4
Ty(Ca) = 5.69 + 5.0 + 6.0 + 5.4 = 22.09

Ve = [(5(14.8 + 17(.521-12)2(.;)9_)2—)2(102.27) )]
Ve = [<5(54.09)(4—)(23()102.27) )]

270.45 — 204.54
Va5 = [( 12 )]

te=[(570)]

Y35 = [550]
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The estimated missing data for Y5 = 5.50. This is replaced in the table and
the value of Ys, is estimated again. This step is repeated until a constant value is

obtained for all the missing data before the accurate missing data values are

obtained.
5X5 LSD
Milk Extracted in cm®/kg of treatment
Columnl Column2 Column3 Column4 Column5 Row Total
Rowl T=53 Co=5.0 Ca=4.1 So0=39 Sh=33 21.6
Row?2 Co =5.69 T=5.0 Sh=3.1 Ca=39 So=41 21.79
Row3 Ca=39 S0=3.6 T=49 Sh=24 Co=550 20.30
Row4 S0=4.2 Sh=29 Co=6.0 T=45 Ca=42 21.8
Rowb Sh=31 Ca=Ys, So0=4.0 Co=54 T=5.6 18.1
Column Total 22.19 16.5 22.1 20.1 22.70 103.9

V., = [<t(R0 + Co +Tp) — 2G, )]

t-D(E-2)
R, =165
C, =18.1

T,(Ca) =39 +4.1+39+42=16.1
/5165 + 18.1 + 16.1) — 2(103.9)
Yo = [( G-1)(G-2) )]
_ [/5(50.7) — 2(103.9)
V5 = [( 4(3) )]

253.5 — 207.8
¥ = [( 12 )]

te = [(57)

Ys, = [3.81]
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Since the value for the previous estimated of Y, = 4.18 is not the same the

3.81 as obtained now, the process must be repeated. We then substitute the

value of Y5, = 3.81 into the table to estimate for Y3

Vs = [<t(RO +Co+Ty) —2G, )]

(t—1D(t-2)
R, =148
C, =172

T, (Co) = 22.09

_[(5(14.8 +17.2 + 22.09) — 2(101.27)
B [( G-1)(G-2) )]
v, = [(5(54.09)(4—)(23()101.27) )]

270.45 — 207.8
Va5 = [( 12 )]

= [(557)]

Y35 = [566]

Substitute Y35 = 5.66 into the table and compute for Ys,

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5

Row Total
Row1l T=53 Co=50 Ca=4.1 S0=39 Sh=33 21.6
Row?2 Co =5.69 T=5.0 Sh=3.1 Ca=3.9 So=4.1 21.79
Row3 Ca=39 So=23.6 T=49 Sh=24 Co=5.66 14.8
Row4 S0=42 Sh=2.9 Co=6.0 T=45 Ca=42 21.8
Row5 Sh=31 Ca=Ys, S0=40 Co=54 T=56 18.1
Column Total 22.19 16.5 22.1 20.1 17.2 103.75

O e ra|
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R, = 18.1
C, = 165
T,(Ca) = 16.1
_ [/5(18.1+ 165 + 16.1) — 2(103.75)
Y = [( G-1(G-2) )]
_ [/5(50.7) — 2(103.75)
15 = [( 4)(3) )]

253.5 — 207.5
5 = [( 12 )]

Substitute Y5, = 3.83 into the table and compute for Y35

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4 Column5 Row Total

Row1 T=53 Co=5.0 Ca=41 So0=3.9 Sh=33 21.6
Row?2 Co =5.69 T=5.0 Sh=31 Ca=39 So=41 21.79
Row3 Ca=39 S0=3.6 T=49 Sh=2.4 Co =Yz5 14.8
Row4 So0=4.2 Sh=29 Co=6.0 T=45 Ca=4.2 21.8
Row5 Sh=31 Ca=3.83 S0=4.0 Co=54 T=56 18.1
Column Total 22.19 20.33 221 20.1 17.2 103.9

94

Vs = [<t(R0 +Cop +Tp) —2Gy )]

E-D-2)

T, (Co) = 22.09

- [(5(14.8 + 17(.5212)2(.;)9_)2—)2(101.92) )]
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Ve, = [(5(54.09)(4—)(23()101.92) )]

270.45 — 203.84
Y35 = [( 12 )]

e =[(557)

Yss = [5.55]

Substitute Y35 = 5.55 into the table and compute for Ys,

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl  Column2 Column3 Column4  Column5 Row Total

Rowl T=53 Co=5.0 Ca=4.1 So=3.9 Sh=33 216
Row?2 Co=569 T=50 Sh=31 Ca=39 So=4.1 21.79
Row3 Ca=39 So=3.6 T=49 Sh=24 Co=555 20.35
Row4 So=42 Sh=29 Co=6.0 T=45 Ca=42 21.8
Row5 Sh=31 Ca=Ys, So=4.0 Co=54 T=56 18.1
Column Total 22.19 16.5 22.1 20.1 22.75 103.64

Y5, = [(t(RO (Jtr 501;(5 0—) 2_) o )]

R, = 18.1
C, =165
Ty (Co) = 16.1

ey [<5(18.1 + 1(65;5_+1;(65.13 ;)2(103.64) >]

Ve, [(5(50.7)(;)i$03.64) >]

253.50 — 207.28
¥ = [( 12 )]

=[5
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Ys, = [3.85]

Substitute Y5, = 5.55 into the table and compute for Y35

5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl Column2 Column3 Column4  Column5 Row Total

Rowl T=53 Co=5.0 Ca=41 So0=3.9 Sh =33 21.6
Row2 Co =5.69 T=5.0 Sh=31 Ca=39 So=4.1 21.79
Row3 Ca=39 S0=3.6 T=49 Sh=24 Co=Ys, 14.8
Row4 So0=42 Sh=29 Co=6.0 T=45 Ca=42 218
Row5 Sh=3.1 Ca=3.85 So0=4.0 Co=54 T=56 21.95
Column Total 22.19 20.35 22.1 20.1 22.75 101.94

v, = [<t(R0 +Co+Ty) —2G, )]

t-1(t-2)
R, = 14.8

T, (Co) = 22.09

Ve = [(5(14.8 + 17(.521-12)2(.;)9_)2—)2(103.64) )]
Ve = [<5(54.09)(4—)(23()101.94) )]

270.45 — 203.88
Y35 = [( 12 )]

te=[(577)]

Y35 = [555]

Since the Y35 = 5.55 is the same as obtained previously, then it presupposes
that the right missing data has been estimated for Y35. Therefore the estimated

missing data values for Y5, and Y5 are 3.85 and 5.55 respectively.
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5X5 LSD

Milk Extracted in cm®/kg of treatment

Columnl  Column2 Column3 Column4  Column5 Row Total

Rowl T=53 Co=5.0 Ca=4.1 So0=3.9 Sh=33 21.6
Row2 Co =5.69 T=50 Sh=31 Ca=39 So=41 21.79
Row3 Ca=39 So0=3.6 T=49 Sh=24 Co=555 20.35
Row4 So0=42 Sh=29 Co=6.0 T=45 Ca=4.2 21.8
Row5 Sh=31 Ca=385 So0=4.0 Co=54 T=56 21.95
Column Total 22.19 20.35 22.1 20.1 22.75 107.49
CT 22.19 20.35 221 20.1 22.75 107.49
RT 21.6 21.79 20.35 21.8 21.95 107.49
Tr 5.3 5 4.9 4.5 5.6 25.3
Cor 5.69 5 6 5.4 5.55 27.64
Car 3.9 3.85 4.1 3.9 4.2 19.95
Sor 4.2 3.6 4 3.9 41 19.8
Shr 3.1 2.9 31 24 3.3 14.8

The first step: Stating of the Hypothesis
The hypothesis stated remains the same.

The second step: Calculating the Correction Factor (CF)

GT = ¥i—1,j=1(T, Co,Ca,So,Sh) =sum of all observations on experimental

units

n=>5

GT = Z (53 + 5.0 +...5.6) = 107.49
i=1,j=1

_(ary?
CF = Y
o (107.49)*>  11554.1 162,16
-2 25 T
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where GT= Grand Total, N=total number of observation, CF=Correction factor.

The third step: Calculating the Total Sum of Squares (TSS)

n=>5
1SS = Y [+ (€01 + o (Tss)?] = CF
i=1,j=1
n=>5
TSS = Z [(5.3)% + (5.0)* + ....(5.6)%] — 462.16
i=1,j=1

TSS = 484.64 — 462.16 = 22.48

The fourth step: Calculating the Treatment Sum of Squares (TrtSS)

(T1)*+(Cor)?+(Car)?+(Sor)?+(Shr)?

Trt SS = Y( ” ) —CF
(25.3)2+(27.64)%+(19.95)%+(19.8)2+(14.8)2
Trt SS = Y( 5 ) — 462.16
TresS= ¥ (640.09 +763.97 + 39:.0 +392.04 + 219.04) — 46216
Trt S = (221 — 462.16

5

Trt SS = 482.63 — 462.16 = 20.47

where t=number of treatments, Tr=Treatment T total, Sh-=Treatment Sh total,

Cor=Treatment Co total, Ca;=Treatment Ca total, So;=Treatment So total.

The sixth step: Calculating the Rows Sum of Squares (RSS)

2 2 2 2 2
RSS = Z((RlT) +(R27)"+(R37)“+(R47)“+(R57) ) — CF

R
(21.6)24(21.79)%4(20.35)% +(21.8)% +(21.95)2
RSS = ) ( s ) —462.16
RSS = z:(466.56+474.80+4lz;.12+475.24+481.80) — 462.16
RSS = Y322 _ 462.16

5

RSS = 462.51 — 462.16
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RSS = 0.35

where R=number of rows, R1;=Treatment Row 1 total, R2;=Treatment Row 2
total, R3r=Treatment Row 3 total, R4:=Treatment Row 4 total, R5;=Treatment

Row 5 total.

The seventh step: Calculating the Column Sum of Squares (CSS)

Css — Z((ClT)2 +(C21)% + (C31)% + (C41)% + (C51)?

- ) — CF
2 2 2 2 2
Css Z((22.19) +(20.35)2 + (22.1) + (20.1)% + (22.75) ) 462.16
R
Css Z((492.40) + (414.12) + (4885.41) + (404.01) + (517.56)) serie

2316.50
CSS = Z( o) —462.16

CSS = 463.30 — 462.16
CSS =1.14
where C=number of rows, Cli=Treatment Column 1 total, C2=Treatment
Column 2 total, C3y=Treatment Column 3 total, C4=Treatment Column 4 total,

C5¢=Treatment Column 5 total.

The eighth step: Calculating the Error Sum of Squares (ESS)
ESS = TSS — (TrtSS + RSS + CSS)
ESS = 22.48 — (20.47 + 0.35 + 1.14)
ESS = 22.48 — 21.96)
ESS = 0.52

where ESS= Error Sum of Squares or unexplained sum of squares.

Now the bias can be computed using the formula:
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Calculating bias using Ca as the missing data

[Go —Ro — Co — To(t — 1)]?
[(t —D(t—2))*

Bo =

Po= bias value
G, = 103.64, C, = 16.5, R, = 18.1, T, = 16.1

_ [103.64 —18.1—-16.5—16.1(5 — 1)]?
o [(5-1)(5 - 2)]?

8, = [103.64 — 34.6 — 64.4)]?
o (D]
_ [103.64 —99)]?
Po= Ty
_ [4.64]
ﬁO - [12]2

Bp = ——— =0.15

Calculating bias using Co as the missing data:

[Go —Rp — Co — Tp(t — D]?
[(t—D(t—-2))?

Bo =

Po= bias value
Go = 101.94, C, = 17.2, Ry = 14.8, Ty = 22.09
_ [101.94 — 14.8 — 17.2 — 22.09(5 — 1)]?
Po = [G-DG-2F
[101.94 — 32 — 88.36]2
Po = (DG
_ [101.94 - 20.36)]°
bo= a2

_ [-18.42]
7 2P
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The ninth step: Making the necessary Adjustments in the Analysis and
Completing the ANOVA table.

Making the necessary Adjustments in the Analysis.
The following adjustments must be done in completing the Anova table:

1. Deduct the value (1) from the total degree of freedom and the unexplained
or error degree of freedom.

2. Subtract the computed bias from the Total Sum of Squares (TSS) and
Treatment Sum of Squares (TrtSS).

Adjustments
Totaldf = [CxR]—-1—-1=25-1—1=23
Unexplained or error = [CxR —1]-[t— 1D+ R-1)+(C-1)] -1
=24-16—-1 =9

Using Ca as treatment having the missing data
Adjusted TSS = 22.48 — B,
where , = 0.15
Adjusted TSS = 22.48 — 0.15 = 22.33
Adjusted TrtSS = 20.47 — By
Adjusted TrtSS = 20.47 — 0.15 = 20.32

Using Co as treatment having the missing data
Adjusted TSS = 22.48 — f3,
where , = 2.36
Adjusted TSS = 22.48 — 2.36 = 20.12
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Adjusted TrtSS = 20.47 — (8,
Adjusted TrtSS = 20.47 — 2.36 = 18.11

Anova table when as missing data is from Ca treatment:

ANOVA TABLE
Sources of Variation df SS MS Fcal. Fcrit. (5%)
Treatment 4 20.32 5.08 9.77 3.63
Row 4 0.35 0.09 0.17 3.63
Column 4 1.14 0.29 0.55 3.63
Error 9 0.52 0.06
Total 23 22.33 0.97
Ferit (5%) @ df of 4,9 3.63
Ferit (1%) @ df of 4,9 6.42

Anova table when as missing data is from Co treatment:

ANOVA TABLE
Sources of Variation df SS MS Fcal.  Fcrit. (5%)
Treatment 4 18.11 4.53 8.71 3.63
Row 4 0.35 0.09 0.17 3.63
Column 4 1.14 0.29 0.55 3.63
Error 9 0.52 0.06
Total 23 20.12 0.87
Ferit (5%) @ df of 4,9 3.63
Ferit (1%) @ df of 4,9 6.42

Tenth step: looking up the F-critical table for the critical values
Ferit(1%)at df of 4,9 for Treatments = 6.42
Ferit(1%)at df of 4,9 for Rows = 6.42
Ferit(1%)at df of 4,9 for Columns = 6.42

Ferit(5%)at df of 4,9 for Treatments = 3.63
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Ferit(5%)at df of 4,9 for Rows = 3.63
Ferit(5%)at df of 4,9 for Columns = 3.63

The Eleventh step: Making the Decision and Conclusions.

The values obtained from the F-critical table compared with the F-values
calculated for the Treatments, Rows and Columns reveals the decisions and
conclusions remain the same as the table without the missing data. This proves
the missing data value has been accurately estimated.
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Abstract

A researcher may have two or more treatments to handle at a time and these
treatments to be handled may or may not interact with each other at certain
levels. The effects of these interactions cannot be established with the types of
designs such as CRD, RCBD and LSD. The multifactorial design thus helps to
establish whether the variations between each type of factor and their interactions
are significantly different or not. This paper thus explains how the multifactorial
design is used to establish whether there are any significant differences between

the treatment types and their interactions.
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5.1 Introduction

Designs like CRD, RCBD and LSD have been used variously under
appropriate situations for the design and analysis of experiments. In every
experiment, a researcher is bound to handle one or more treatments — that which
is expected to be subjected to an experimental material or unit or plot. A factor is
defined as a basic treatment and in terms of a multifactorial or factorial designs, a
treatment in a sense is a combination of two or more levels of factors. This means
that in considering two levels of factors or treatments like the amount of sugar
used in the preparation of porridge (A) — half cup of sugar (A;) and two cups of
sugar (A,); and the quantity of porridge prepared (Q) — twenty (20) litres (Q;) and
twenty-five (25) litres (Q) prepared. Thus in handling of factors and treatments at
different levels, the researcher would be faced with how to deal or cope with
multiple factors. However it must be noted that CRD, RCBD and LSD can be
designed and contained in multifactorial designs. It is the appropriate design used
in handling treatments with different levels in order to ascertain or establish
whether there exist significant differences between the various factor levels or

treatment levels as well as the interactions between the treatments.

The factorial experimental designs are more complicated because they are
used for designing and analyzing many factors which can be observed on large
experimental units and thus not suitable for designing simple experiments. It
allows for greater precision when estimating the overall effects of factors as it
helps to expose what is referred to as hidden replications. For instance when
studying two factors say A and B with two levels A;, A, and B, B, respectively,
the researcher would observe the normal required plots such as A, B and AB
and extra plots or units. In all, the researcher would observe these plots or units:
AB1, A1B,, AsBy, A:B,, (AsBs, this represents interaction between AB).
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It must however be noted that the objectives of factorial experimental designs
include testing of the main effects or factors and their interactions, and not the
treatments. Hence the treatment Mean Squares (MSQ) are not found.

To consider a CRD, let us assume a researcher wants to study the time it
takes for the same quantity of milk from cow (Al) and soyabean (A2) to
ferment into yoghurt under two temperature conditions B1 and B2. When this
experiment is replicated four times, it can be represented below:

5.2 CRD
Al A2
REP Bl B2 Bl B2
1 54 53 5.1 4.7
2 4.6 5.6 45 4.9
3 41 4.8 5.6 52
4 3.9 4.8 4.5 5.0

The first step in the analysis is to put forth the hypothesis:

Before analyzing the data, there is the need to put forward the following

hypotheses

Ho: Maig1 = Mai2 = Maz2e2 = Mazs2
Hi: Maig1 # Maisz = Maze2 = Hazs2
H,: All the means of the treatments are equal

Ha: At least one of the means of the treatments is different

Ho: Ha1 = Ha2

http://www.sciencepublishinggroup.com 109



Basic Concepts and Applications of Experimental Designs and Analysis

Hil Par 7 Haz

H,: The means of the 2 levels of A are equal

Ha: The means of the 2 levels of A are unequal

Ho: M1 = M2

Hi: o1 7 M2

H,: The means of the 2 levels of B are equal

Ha: The means of the 2 levels of B are unequal

Ho! Baxe = Maxs

Hi: Maxs # Haxs

H,: The effects of the interaction of two factors at the 2 levels are the same

Ha: The effects of the interaction of two factors at the 2 levels are different

A, A;
REP B, B, B, B,
1 5.4 583 5.1 4.7 20.5
2 4.6 5.6 4.5 4.9 19.6
3 4.1 4.8 5.6 5.2 19.7
4 3.9 4.8 4.5 5 18.2
18 20.5 19.7 19.8 78

Ttyp, = 2(5.4+ 4.6+ +39)=18
Tty,p, = %(5.3+56+--+4.8)=205
Tty,p, = X(5.1+45+--+4.5)=19.7

Ttap, = L(47+49+ - +5)=198
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Tty = Z(TtAlBl + Tta,p, + Tta,p, + Ttap,) =78

The second step is calculating of the Correction Factor:

X(Tt,)*  (78)* (78)* 6084

CF = = = =
(rxt) 4x4 16 16

= 380.25

The third step is calculating of the Total Sum of Squares:

TSS =
Y((54 + (53)2 + (5.1)2 + (4.7)% + (4.6)2 + (5.6)2 .....+(5)?) - 380.25 = 3.63

The fourth step is calculating of the Treatment Sum of Squares:

Tt 24+ (Tt 2+ (Tt 24 (Tt 2
TrtSs = Z(( AlBl) ( Ale) 4( AZBZ) ( AZBZ) )—380.25=0.85

2 2 2 2
Triss = z <(18) + (20.5) +4(19.7) +(19.8) )_ 380.25 = 0.85

1524.38
Tress = Z( ; )—380.25 — 085

TrtSS = 381.10 — 380.25 = 0.85

The fifth step is calculating of the Factor “4” Sum of Squares (ASS):
A= A+ A,
A, =18+ 20.5 = 38.5
A, =19.7 4 19.8 = 39.5

A)? + (Ay)?
z(( 1) (42) M) TRy e
rxn
C (38.5)% + (39.5)
ASS = Z( ) - 38025
1482.25 + 1560.25
ASS = Z( . ) — 38025

3042.5
ASS = Z( =) - 38025
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ASS = Z 380.31 — 380.25 = 0.063

The sixth step is calculating of the Factor “B” Sum of Squares (BSS):
B= B, +B,
B; =18 +19.7 = 37.7
B, =20.5+19.8 =40.3

2 2
BSS = Z((Bl) + (B,) GO+ By op

rxn
(37.7)% + (40.3)?
pss= Y 3802
SS ( T ) — 380.25
1421.29 + 1624.09
BSS = Z( - ) — 38025

3045.38
BSS = Z( ) - 380.25

BSS = Z 380.67 — 380.25 = 0.42

The seventh step is calculating of the interaction between “4 x B” Sum of
Squares (ABSS):
ABSS = TrtSS — (ASS + BSS)
ABSS = 0.85 — (0.063 + 0.42)
ABSS = 0.85 — 0.48 = 0.37

The eighth step is calculating of the Error Sum of Squares (ESS):

ESS =TSS —TrtSS = 3.63 —0.85 =2.78

Ttr=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of
Squares, BSS=Factor “B” Sum of Squares, TrtSS=Treatment Sum of Squares,
ABSS=Interaction between Factors “A x B” Sum of Squares, ESS=Error Sum
of Squares, CF=Correction Factor, n = number of levels of factors, r = number
of replication.
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The ninth step looking up the F-critical table to the F-critical values:

In looking for the critical value, the degree of the variable of the variable
whose critical value is being read from the table is located on the outer most
row and matched with the error degree of freedom on the outer most column on
the left of the table. Following the given procedure, the following readings
would be obtained from the 5% and 1% F-critical table:

Treatment: F crit at df 3, 9 for 5% = 3.86; F crit at df 3, 9 for 1% = 6.99
Factor A: Fcritatdf 1, 9 for 5% = 5.12; F crit at df 1, 9 for 1% = 10.56
Factor B: Fcritat df 1, 9 for 5% =5.12; F critat df 1, 9 for 1% = 10.56

Interaction (A x B): F crit at df 1, 9 for 5% = 5.12; F crit at df 1, 9 for
1% = 10.56.

The tenth step is completing the ANOVA table:

ANOVA TABLE
Sources of Variation df SS MS Fcal. Fcrit. (5%) Fcrit (1%)
Treatment 4-1=3 0.85 0.28 0.92 3.86 6.99
Factor A 2-1=1 0.063 0.06 0.20 5.12 10.56
Factor B 2-1=1 0.42 0.42 1.36 5.12 10.56
Interaction (A x B) 2-1=1 0.37 0.37 1.20 5.12 10.56
Error 15-6=9 2.78 0.31
Total 16 — 1=15 3.63

The eleventh step is making the decision or conclusion:

Decision on Treatment

Fcal (0.92) < 3.86, Fcrit.or tab. (5%)at 3,9
Fcal (0.92) < 6.99, Fcrit.or tab. (1%)at 3,9
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Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be
concluded that there are no significant differences between the various
treatments and then fail to reject the null hypothesis.

Decision of Factor A
Fcal (0.20) < 5.12, Fcrit.or tab. (5%)at 1,9
Fcal (0.20) < 10.56, Fcrit.or tab. (1%)at 1,9

Fcal < Fecrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor A.

Decision of Factor B
Fcal (1.36) < 5.12, Fcrit.or tab.(5%)at 1,9
Fcal (1.36) < 10.56, Fcrit.or tab.(1%)at 1,9

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor B.

Decision on the interactions (A x B)
Fcal (1.20) < 5.12, Fcrit.or tab. (5%)at 1,9
Fcal (1.20) < 10.56, Fcrit.or tab. (1%)at 1,9

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two
levels of factor A do not vary significantly at the two levels of B when applied
together.

5.3 RCBD

With regards to RCBD, the researcher can study the time it takes for the same

guantity of milk from cow (A;) and (A;) to ferment into yoghurt under two
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temperature conditions B; and B, blocked under the mode of storage: block

1( fridge), block 2 (air condition) and block 3 (normal room condition).

A A;
BLK B, B. B, B,
1 5.4 5.3 5.1 4.7
2 4.6 5.6 45 4.9
3 4.1 4.8 5.6 5.2
4 3.9 48 4.5 5.0

The first step in the analysis is to put forth the hypothesis:

For RCBD the following hypotheses can be put forth:
Ho: tBLK; = pPBLK;, = uBLK;= LBLK,

Hi: uBLK; # BLK; = uBLK; = pBLK,

H,: All blocks have equal treatment means

Ha: At least one block’s treatment means differ from the others

Ho: PA1B1 = PA1B; = Hazgz = Haze2

Hi: Maig1 # Mais2 = Mazs2 = Haze2

H,: All the means of the treatments are equal

Ha: At least one of the means of the treatments is different

Ho: PAL = PA,

Hi: Hai # Ha2

H,: The means of the 2 levels of A are equal
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Ha: The means of the 2 levels of A are unequal

Ho: Me1 = M2

Ha b1 # Moz

H,: The means of the 2 levels of B are equal

Ha: The means of the 2 levels of B are unequal

Ho! Maxe = Maxs

Hi: Maxs # Maxs

H,: The effects of the interaction of two factors at the 2 levels are the same

Ha: The effects of the interaction of two factors at the 2 levels are different

A A
BLK B, B, B, B,
1 54 53 51 4.7 20.5
2 4.6 5.6 4.5 4.9 19.6
3 4.1 4.8 5.6 52 19.7
4 3.9 4.8 45 5 18.2
18 20.5 19.7 19.8 78

Tty,p, = X(5.4+46+--+3.9)=18
Tta,p, = L(5.3+56+ - +48)=205
Tty,p, = %(5.1+ 45+ +45)=197

Tta,p, = L(47+49+--+5)=19.8

Tty = Z(TtAlBl + Tty + Ttayp, + TtAZBz) =78
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The second step is calculating of the Correction Factor:

Tt )2 Tt )2 78)? (78)? 6084
CF = Z( T) — Z( T) — ( ) = ( ) = = 380.25
t 4x2x2 4x4 16 16

where t=number of blocks x 2 levels of A x 2 levels of B=4 x 2 x 2

The third step is calculating of the Total Sum of Squares:
TSS =
Y((5.4 + (5.3)% + (5.1)* + (4.7)* + (4.6)* + (5.6)” ..... +(5)*) - 380.25 = 3.63

The fourth step is calculating of the Treatment Sum of Squares:

Tress — Z <(T%Bl)2 + (Tta, p,)? + (Ttayp,)* + (TtAzBZ)Z)

-380.25 = 0.85
4

2 2 2 )
Trtss = Z(“S) + (20.5)% + (19.7)* + (19.8)

-380.25 = 0.85
; )

1524.38
TrtSS = Z( 2 )—380.25 =0.85

TrtSS = 381.10 — 380.25 = 0.85

The fifth step is calculating of the Factor “4 " Sum of Squares (ASS):
A= A+ 4,
A; =184 20.5 = 385
A, =19.7+19.8 =39.5

A%+ (4,)?
Z(( 1) (42) MU TMR) o
rxn
C(385)% + (39.5)?
ASS = Z( — ) — 380.25
1482.25 + 1560.25
ASS = Z( . ) — 380.25

3042.5
ASS = Z( =) - 38025
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ASS = Z 380.31 — 380.25 = 0.063

The sixth step is calculating of the Factor “4” Sum of Squares (ASS):
A= A+ A,
A, =18+ 20.5 = 38.5
A, =19.7 4+ 19.8 = 39.5

A%+ (4,)?
Z(( 1) (42) MU TVR)
rxn
C (38.5)% + (39.5)?
ASS = Z( — ) — 380.25
1482.25 + 1560.25
ASS = Z( . ) — 38025

3042.5
ASS = Z( =) - 38025

ASS = Z 380.31 — 380.25 = 0.063

The seventh step is calculating of the Factor “B” Sum of Squares (BSS):
B= B, +B,
B, =18 +19.7 = 37.7
B, = 20.5+19.8 = 40.3

2 2
BSS = Z((Bl) + (B2) SN G

rxn
(37.7)2 + (40.3)?
BSS = z _ 38025
( 4x2 )
1421.29 + 1624.09
BSS = Z( - ) — 380.25

3045.38
BSS = Z( =) - 380.25

BSS = Z 380.67 — 380.25 = 0.42
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The eighth step is calculating the Block Sum of Squares (BLKSS):

_ v (BLK17)? +(BLK27)2+(BLK37)? +(BLK 47)°
BLKSS = Z( number of blocks

) —CF

(20.5)24(19.6)2+(19.7)2+(18.2)%
4

BLKSS = 3, -380.25
( )

BLKSS = ¥, ((420-25)+(384-16)+(388.09)+(331.24)

; )-380.25

BLKSS = ¥ (@) ~380.25

BLKSS = Y 380.94-380.25 = 0.69

The ninth step is calculating of the interaction between “4 x B” Sum of
Squares (ABSS):
ABSS = TrtSS — (ASS + BSS)
ABSS = 0.85 — (0.063 + 0.42)
ABSS = 0.85 — 0.48 = 0.37

The tenth step is calculating of the Error Sum of Squares (ESS):
ESS = TSS — (BLKSS + TrtSS)
ESS = 3.63 — (0.85 + 0.69)
ESS = 3.63 — 1.54 = 2.09

Ttr=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of
Squares, BSS=Factor “B” Su m of Squares, TrtSS=Treatment Sum of Squares,
BLKSS=Block Sum of Squares, ABSS=Interaction between Factors “A x B”
Sum of Squares, ESS=Error Sum of Squares, CF=Correction Factor,
n=number levels of factors, r = number of replication.

The eleventh step looking up the f-critical table to the f- critical values:

Block: f crit at df 3, 6 for 5% = 4.76; f crit at df 3, 6 for 1% =9.78
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Treatment: F crit at df 3, 6 for 5% = 4.76; F crit at df 3, 6 for 1% = 9.78
Factor A: Fcritat df 1, 6 for 5% = 5.99; F crit at df 1, 6 for 1% = 13.75
Factor B: F crit at df 1, 6 for 5% = 5.99; F crit at df 1, 6 for 1% = 13.75

Interaction (A x B): F crit at df 1, 6 for 5% = 5.99; F crit at df 1, 6 for
1% = 13.75.

The twelfth step is completing the ANOVA table:

ANOVA TABLE
Sources of Variation df SS MS Fcal.  Fecrit. (5%) Fcrit (1%)
Block 4-1=3 0.69 0.23 0.66 4.76 9.78
Treatment 4-1=3 0.85 0.28 0.81 4.76 9.78
Factor A 2-1=1 0.063  0.06 0.18 5.99 13.75
Factor B 2-1=1 0.42 0.42 121 5.99 13.75
Interaction (A x B) 2-1=1 0.37 0.37 1.06 5.99 13.75
Error 15-9=6 2.09 0.35
Total 16 - 1=15 3.63

The thirteenth step is making the decision or conclusion:

Decision on Block

Fcal (0.66) < 4.76, Fcrit.or tab. (5%)at 3,6
Fcal (0.66) < 9.78, Fcrit.or tab.(1%)at 3,6

The F cal < F crit for the block at both 1% and 5% levels of significance,
hence the researcher must fail to reject the null hypothesis for the block and
conclude that there is no significant difference between the blocks. It there for
suggests that there is no justification for blocking and the RCBD is therefore not
the appropriate design for analysis of this experiment.
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Decision on Treatment

Fcal (0.81) < 4.76, Fcrit.or tab. (5%)at 3,6
Fcal (0.81) < 9.78, Fcrit.or tab. (1%)at 3,6

Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be
concluded that there are no significant differences between the various
treatments and then fail to reject the null hypothesis.

Decision of Factor A

Fcal (0.18) < 5.99, Fcrit.or tab. (5%)at 1,6
Fcal (0.18) < 13.75, Fcrit.or tab. (1%)at 1,6

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor A.

Decision of Factor B

Fcal (1.21) < 5.99, Fcrit.or tab. (5%)at 1,6
Fcal (1.21) < 13.75, Fcrit.or tab. (1%)at 1,6

Fcal < Fecrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor B.

Decision on the interactions (A x B)
Fcal (1.06) < 5.99, Fcrit.or tab.(5%)at 1,6
Fcal (1.06) < 13.75, Fcrit.or tab. (1%)at 1,6

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two
levels of factor A do not vary significantly at the two levels of B when applied
together.
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5.4 LSD

For the LSD, the same experiment can be used as in the case of CRD and
RCBD, but this time around there is no replication and blocking as done
respectively under the two mentioned designs.

Ay Ay
B, B, B, B,
A B, 5.4 5.3 5.1 4.7
! B, 4.6 5.6 4.5 4.9
A B, 4.1 4.8 5.6 5.2
2 B2 3.9 4.8 4.5 5.0

The first step in the analysis is to put forth the hypothesis:

The following hypotheses can be stated for the LSD:

Ho: PCOL; = PCOL, = pCOL; = pCOL,

H,: PCOL; # PCOL, = pCOLs = LCOL,

H,: All columns have equal treatment means

Ha: At least one column’s treatment means differ from the others
Ho: LROW; = PROW, = LROW; = LROW,

H,: JROW; # JROW, = PROW; = LROW,

H,: All rows have equal treatment means

Ha: At least one row’s treatment means differ from the others
Ho: FAB1 = PAB2 = Pazgz = Haze?

Hi: Maig1 # Mais2 = Mazs2 = Maze2
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H,: All the means of the treatments are equal
Ha: At least one of the means of the treatments is different
Ho: WA = DA,

Hi: Ma1 7 Ha2

H,: The means of the 2 levels of A are equal
Ha: The means of the 2 levels of A are unequal
Ho: b1 = Hez

Ha b1 # Moz

H,: The means of the 2 levels of B are equal
Ha: The means of the 2 levels of B are unequal
Ho: Maxe = Maxs

Hi: Maxe # Maxe

H,: The effects of the interaction of two factors at the 2 levels are the same

Ha: The effects of the interaction of two factors at the 2 levels are different

Ay A,
B, B, B, B,
A B, 5.4 5.3 5.1 4.7 20.5
B, 4.6 5.6 45 4.9 19.6
N B: 4.1 4.8 5.6 5.2 19.7
B, 3.9 4.8 45 5 18.2
18 20.5 19.7 19.8 78
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The second step is calculating of the Correction Factor:

_ X(Tt,)?  X(Tt,))*  (78)*  (78)° _ 6084

CF t  4x2x2 4x4 16 16

= 380.25

where t=number of blocks x 2 levels of A x 2 levels of B=4 x 2 x 2

The third step is calculating of the Total Sum of Squares:

TSS =
Y((5.4 4 (5.3)2 4+ (5.1)2 + (4.7)% + (4.6)® + (5.6)% .....+(5)%) -380.25 = 3.63

The fourth step is calculating of the Treatment Sum of Squares:

TrtSS = Z <(TtAlBl)2 + (TtAlBZ)Z + (TtAsz)z + (TtAsz)z

-380.25 = 0.85
; )

2 2 2 )
Trtss = Z(“S) + (20.5)% + (19.7)* + (19.8)

-380.25 = 0.85
; )

1524.38
TrtSS = Z( 2 )—380.25 =0.85

TrtSS = 381.10 — 380.25 = 0.85

The fifth step is calculating of the Column Sum of Squares (CSS):

_ Z (COL17)? + (COL27)? + (COL37)? + (COLAL)?
CSS = -CF
number of columns

2 2 2 2
CsS = z((m) +(20.5) +4(19.7) +(19.8)

>—380.25

Css = Z ((324) + (420.25) + (388.09) + (392.04)

2 )—380.25

CSS = Z 381.10-380.25 = 0.85

The sixth step is calculating of the Row Sum of Squares (RSS):

RSS — Z (ROW1;)? + (ROW2;)? + (ROW3)? + (ROW4,)? _CF
number of rows
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2 2 2 2
RSS = Z((ZOS) +(19.6)% + (19.7)% + (18.2)

-380.25
; )

RSS = Z <(420-25) + (384.16) + (388.09) + (331.24)

-380.25
; )

RSS = Z 380.94-380.25 = 0.69

The seventh step is calculating of the Factor “4” Sum of Squares (ASS):
A= A+ A,
A; =18 +20.5 =385
A, =19.7+19.8 =39.5

A%+ (4,)?
z(( 1) (42) M) TR e
rxn
C (38.5)% + (39.5)
ASS = Z( ) - 38025
1482.25 + 1560.25
ASS = Z( : ) — 380.25

3042.5
ASS = Z( =) - 38025

ASS = Z 380.31 — 380.25 = 0.063

The eighth step is calculating of the Factor “4” Sum of Squares (ASS):
A= A+ A,
A; =18 +20.5 =385
A, =19.7 4+ 19.8 = 39.5

2 2
Z( A1) +(Az)) CF

rxn
C(385)% + (39.5)?
ASS = Z( — ) — 380.25
1482.25 + 1560.25
ASS = Z( . ) — 38025
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3042.5
ASS = Z 8 380.25

ASS = Z 380.31 — 380.25 = 0.063

The ninth step is calculating of the Factor “B” Sum of Squares (BSS):
B= B, +B,
B; =18+ 19.7 =37.7
B, =20.5+19.8 =40.3

2 2
BSS = Z((Bl) + (B2) S o

rxn

2 2
BSS = Z(m )"+ (40 35 _ 38025

1421.29 + 1624.09
BSS = Z( 5

) — 380.25

3045.38
BSS = Z( =) - 380.25

BSS = Z 380.67 — 380.25 = 0.42

The tenth step is calculating of the interaction between “4 x B” Sum of
Squares (ABSS):
ABSS = TrtSS — (ASS + BSS)
ABSS = 0.85 — (0.063 + 0.42)
ABSS = 0.85—-0.48 = 0.37

The eleventh step is calculating of the Error Sum of Squares (ESS):
ESS =TSS — (TrtSS + RSS + CSS)
ESS = 3.63 — (0.85 + 0.69 + 0.85)
ESS = 3.63—2.39 = 1.24
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Ttr=Treatment Total, ASS=Factor “A” Sum of Squares, TSS=Total Sum of
Squares, BSS=Factor “B” Sum of Squares, TrtSS=Treatment Sum of Squares,
BLKSS=Block Sum of Squares, ABSS=Interaction between Factors “A x B”
Sum of Squares, ESS=Error Sum of Squares, CF=Correction Factor,
n=number levels of factors, r = number of replication.

The twelfth step looking up the F-critical table to the F-critical values:
Column: F crit at df 3, 3 for 5% =9.28; F crit at df 3, 3 for 1% = 29.46
Row: F crit at df 3, 3 for 5% = 9.28; F crit at df 3, 3 for 1% = 29.46
Treatment: F crit at df 3, 3 for 5% = 9.28; F crit at df 3, 3 for 1% = 29.46
Factor A: F critat df 1, 3 for 5% = 10.13; F crit at df 1, 3 for 1% = 34.12
Factor B: F crit at df 1, 3 for 5% = 10.13; F crit at df 1, 3 for 1% = 34.12

Interaction (A x B): F crit at df 1, 3 for 5% = 10.13; F crit at df 1, 3 for
1% =34.12.

The thirteenth step is completing the ANOVA table:

Sources of Variation df SS MS Fcal. Fcrit. (5%) Fcrit (1%)

Column 4-1=3 0.69 0.23 0.56 9.28 29.46
Row 4-1=3 0.85 0.28 0.69 9.28 29.46
Treatment 4-1=3 0.85 0.28 0.69 9.28 29.46
Factor A 2-1=1 0.063 0.06 0.15 10.13 34.12
Factor B 2-1=1 0.42 0.42 1.02 10.13 34.12
Interaction (A x B) 2-1=1 0.37 0.37 0.90 10.13 34.12

Error 15-12=3 1.24 0.41

Total 16 -1=15 3.63
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The fourteenth step is making the decision or conclusion:

Decision on Column
Fcal (0.56) < 9.28, Fcrit.or tab. (5%)at 3,3
Fcal (0.56) < 29.46, Fcrit.or tab. (1%)at 3,3

The F cal < F crit for the block at both 1% and 5% levels of significance,
hence the researcher must fail to reject the null hypothesis for the column and
conclude that there is no significance difference between the columns.

Decision on Row
Fcal (0.69) < 9.28, Fcrit.or tab. (5%)at 3,3
Fcal (0.69) < 29.46, Fcrit.or tab. (1%)at 3,3

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be
concluded that there are no significant differences between rows hence the
researcher must fail to reject the null hypothesis for the row.

Once it has been established that there are no significant differences between
the columns and rows respectively in the design, one can therefore conclude
that there is no justification for the use of LSD, it is thus inappropriate for
analysis of the experiment in question.

Decision on Treatment

Fcal (0.69) < 9.28, Fcrit.or tab. (5%)at 3,3
Fcal (0.69) < 29.46, Fcrit.or tab.(1%)at 3,3

Since Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, it can be
concluded that there are no significant differences between the various
treatments and then fail to reject the null hypothesis for the treatment.
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Decision of Factor A
Fcal (0.15) < 10.13, Fcrit.or tab. (5%)at 1,3
Fcal (0.15) < 34.12, Fcrit.or tab.(1%)at 1,3

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor A.

Decision of Factor B
Fcal (1.02) < 10.13, Fcrit.or tab. (5%)at 1,3
Fcal (1.02) < 34.12, Fcrit.or tab. (1%)at 1,3

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence there
are no significant differences between the two different levels of factor B.

Decision on the interactions (A x B)

Fcal (0.90) < 10.13, Fcrit.or tab. (5%)at 1,3
Fcal (0.90) < 34.12, Fcrit.or tab. (1%)at 1,6

Fcal < Fcrit. or tab. at both 1% and 5% levels of significance, hence the two
levels of factor A do not vary significantly at the two levels of B when applied
together.
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Spilt plot experimental design analysis is quite complicated because it involves
the analysis of the main plot and then the sub plot. Due to its complicated nature,
analysis of such a design is quite difficult for the understanding of students and
most researchers. It is the appropriate design used for the analysis of a two factor
experiment where all the treatments or factors cannot be contained in complete
block design. This chapter explains how this design can be used and handled when

analysing experiments.
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6.1 Introduction

Every experimental design has its peculiar usefulness and cannot be relegated
to the background when the situation calls for it. Whenever a researcher or an
experimenter is faced handling two factor experiment which cannot be contained
in a complete block design, then the split plot designs are used. The split plot
design is thus suited for two factor experiment where the main factor is assigned
to the main plot and the second factor assigned to the subplot which emanates
from the division of the main plot. Thus the main plot becomes a block on its own
and has subplot which holds treatment. The main factor is the factor which the
researcher is very familiar with its characteristics. In a split plot design, the
precision of measurement of effects of the main plot factors is sacrificed to
improve that of the sub-plot factor. The relative size of the main effects and the
precision of measurement of effects should not be the same for both factors —
main factor and the sub factor. Assignment of factors to the main plot and the
sub- plot is important and the guidelines to make this choice or assign the factors
to the plot is determined by the relative size of the main effects and the precision
of its measurement in relation to the researcher or experimenter’s interest. As
such it is often referred to as an experiment of convenience.

When the experimenter is considering greater precision for one factor as
opposed to the other, the factor that requires a greater precision is assigned to
the sub-plot and that with less precision assigned to the main plot. Taking for
example a machine designer and a chemist considering a split plot design that
involves the sizes of a machine type (S) and the chemical composition of food
processed using these machines (C). The machine designer and the chemist are
likely to assign these two factors as follows as per the precision required from
each of on the measurement of the factors:
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Machine Designer

Factors Factor type Precision required Plot type the factor must be assigned
Sizes of machines Sub factor  More precision sub plot -

Chemical composition Main factor to be assigned to

Main factor  Less precision

of processed food main plot
Chemist
Factors Factor type Precision required Plot type the factor must be assigned
ClrEmiEel EomEoEiien Sub factor  More precision sub plot -

of processed food

Main factor to be assigned to

Sizes of machines ~ Main factor  Less precision main plot

As regard the relative size of the main effects, the experimenter assigns
factors to the main and subplot according to the relative size of their expected
effects. For instance, if the main effect of one factor is larger and easier to
detect than the other it is assigned to the main plot and the other assigned to the
sub-plot. Taking for instance in an experiment to test the effects of different
methods of processing food (P) and storing food (A) on nutrient loss; the factors
in this experiment can be assigned in the design based on the relative size of
their effects as shown below:

Assignment of factors based on the relative size of their effects

Factors Factor type Size of effects factors Plot type the factor must be assigned
Food processing . .
methods (P) Main factor Larger effects Main plot
0T S Sub-factor Lesser effects Sub-plot

methods (A)

Another important factor in assigning factors is the management practices to
be adopted in handling the factors under the design. For instance if the
researcher is experimenting on the effect of a particular food item on the growth
in terms of height on humans above twenty (20) year old (H) and humans below
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one (1) to twenty (20) years (G), since it has been established that humans cease
to grow in height at age 21, those who are above twenty (H) needs to be
assigned to the sub-plot while those between 1 and 20 be assigned to the main
plot to minimize the effect of the food to those who already have the potential
or capable of growing in height. This last factor applies to agricultural
experiments. However with other industrial experiments, there are the hard-to-
change factors which are assigned to the main plots and the easy-to-change
factors which are assigned to the sub-plots. For instance assuming a sapele
board is to be subjected to three different treatments (A, B, C) and then painted
with three different paints (X, Y, Z) to ascertain its acceptability by users. These
can be achieved in two ways: the first is to treat each sapele board in the three
different conditions, divide each of them into three different portions and then
paint them with the three selected paints; the other way is to divide each of the
sapele board into three portions first, treat each of them and then paint them.

Therefore in a split plot experimental designs, the levels of the main plot
factor multiplied by the levels of the sub-plot factor gives the number of
treatments. It presupposes that if one is considering three levels of H (Hy, H,, H3)
as sub-plot factor and G (G, G,, G3) as the main plot factor, then the number of
treatments equals nine (9), 3 levels of H x 3 levels of G. if these are replicated
for four (4) times, then there will be 36 treatments or observable units - 4

replicates x 3 levels of H x 3 levels of G.

To explain the step-by-step procedures used to analyse the split plot design,
we can consider a hypothetical situation of designing an experiment involving
three machines (M; M, M) made out of different materials such stainless stain,
Aluminium and Iron respectively and their respective wear in terms of particles
size and quantity (W;, W,, W) into the flour produced when used in milling

the same quantity of maize.
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In this particular case the main plot factors would be the machine types (M,
M, M) and the subplot factors would be the different quantity of wear (W, W,
Ws,). Thus the split-plot design is shown below:

REPLICATION I
Ml MZ M3
W, W, W,
W, W, W,
W, W, W,
REPLICATION Il
M M; M,
W2 WZ WZ
W, W, W,
W, W, W,
REPLICATION Il
M; M; M,
W W, W,
W, W, W,
Wz WZ W2

In this experiment, the first replication shows how the split plot design looks
like and randomization can be achieved as done in the other replications Il and
I11. The design and the replications show how the main plots factors and the
subplot factors would be arranged in the experiment. However when the
experiment is conducted, the data obtained can be represented as follows:
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REPLICATION I
Ml MZ M3
1.3 1.9 2.2
11 2.1 15
15 1.6 14
REPLICATION Il
M M M,
1.2 22 1.9
14 15 2.1
1.3 14 1.6
REPLICATION I11
M; M, M,
1.9 2.2 2.5
21 15 1.6
1.6 14 2.1

In order to do the calculation to complete the ANOVA table, the data
obtained from the experiment is summarized and shown in the table below:

A W, W,
M, 1.3 2.1 15
M, 1.9 2.1 16
REPLICATION |
M, 2.2 15 1.4
M, 13 1.2 1.4
Ms 1.4 2.2 15
REPLICATION II
M, 16 1.9 2.1
Ms 2.1 1.6 1.9
M, 15 1.4 2.2
REPLICATION IlI
M, 1.6 2.1 2.5
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6.2 Analysis of the Split Plot Design

For the analysis of the split plot design, one needs to understand that the size
of the main plot is W times the size of the of the sub plot; the number of times
the main plot treatment is tested is equal to the number of replications (r) used,;
there are three degrees of precision where the main plot factor is associated with
the lowest degree of precision and the sub plot is associated with the highest
degree of precision.

In doing the analysis for the split plot, the whole plot and the sub plot
analyses must be done.

6.3 Whole Plot Analysis

The main plot treatments M;, M, and M3 within the blocks and handled as
randomized complete block design. Once the main plot treatments are
randomized as in the RCBD, no adjustment is required as regard the sum of
squares for the main plot treatments (M).

In other to do the analysis the following steps should be followed:

W, W, W,

M, 1.3 2.1 15

REPLICATION | bt = — Lo
M, 2.2 15 1.4

M, 13 12 14

REPLICATION Il M, 1 2.2 1
M; 1.6 1.9 2.1

M, 21 16 1.9

REPLICATION Il bet 1 1 2.2
M, 1.6 2.1 2.5
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The first step is to calculate the replication total and the grand total.
In other to do these calculations the data has to be arranged in the tables below:

A cross tabulation of replication and machine type — main plot treatment (RM)

Wl WZ W3

M; 1.3 21 15

REPLICATION | M, 1.9 2.1 16
Ms 2.2 15 14

M; 13 1.2 14

REPLICATION II Ms; 14 2.2 15
M; 1.6 1.9 21

M 2.1 1.6 19

REPLICATION I1I M, 15 1.4 2.2
M, 1.6 21 25

Cross tabulation of Replication and Machine type (RM)

M; M, M; Rep Totals
REPLICATION I 4.9 5.6 5.1 15.6
REPLICATION Il 5.6 3.9 5.1 14.6
REPLICATION III 5.1 6.2 5.6 16.9
Machine type Totals 15.6 15.7 15.8
Grand Total 47.1

Calculating the Grand Total (GT)
n=9

GT = Z (49+5.6+51+56++5.6) =47.1

i=1,j=1

Calculating the Correction Factor (CF)

GT)?

CF = (GT)

rmw
(47.1)2
CF= ———
3x3x3
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e 2218.41
27
CF = 82.16

where r=no. of replications, m=no. of levels of machine types, w=no. of
levels of machine wears.

At this point one must compute the sum of squares of the main plot and these
are done and illustrated below:

Calculating the Total Sum of Squares (TSS)

TSS = Z sum of square of all observations — CF

n=9
TSS = Z (mlwl rl)z + o (m2W3T'3)2 —CF
i=1,j=1k=1

TSS = Z[(1.3)2 + (2.1)2 4 (1.5)% + (2.2)2 + -+ (2.5)?] — 82.16

TSS = 2[1.69 + 441+ 225+ 484+ -+ 6.25] —CF

TSS = 85.55—-82.16 = 3.39
TSS = 3.39

Calculating the Replication Sum of Squares (RSS)

RSS = Z [(RlT)Z + (RZT)Z + (R3T)2]

— CF
mw
15.6)% + (14.6)% + (16.9)?
RSS=Z[( )° +(14.6)" + (16.9)7] 8216
3x3
[243.36 + 213.16 + 285.61]
RSS = Z 3 — 82.16

RSS = Z(@ — 82.16)
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RSS = 82.46 — 82.16
RSS = 0.30

Calculating the Machine Type Sum of Squares (MSS).

It should be noted here that the main plot factor is the machine type.

MSS = Z |:(1\/[1T)2 + (MZT)Z + (MST)Z]

— CF
T™W
15.6)% + (15.7)2 + (15.8)2
MSS=Z[( )"+ (15.7)" +(158)7] 82.16
3x3
[ 243.36 + 246.49 + 249.64]
MSS = Z 5 — 82.16

MSS = Z(@ _ 82.16)

MSS = 82.17 — 82.16
MSS = 0.01

Calculating the Replication and Machine Type Sum of Squares (RMSS).

Note: one is expected to use the cross tabulation table for replication and
machine type

N (mur)” + + (myr3)?
RMSS = Z 1" )’
w
i=1,)=1
4.9)* + (5.6)* + (5.1)* + - + (5.6)*
RMSS=Z[( )’ +(5.6)° + (5.1 GOl gy
w
[24.01 + 31.36 + 26.01 + - + 31.36]
RS = Z 3 — 82.16

[249.77 |
RMSS = ZT - 82.16

RMSS = 83.26 — 82.16)
RMSS =1.10
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Main plot Error Sum of Squares (MPESS) = RMSS — RSS — MSS
MPESS = RMSS — RSS — MSS
MPESS = 1.10-0.30 - 0.01
MPESS = 0.79

6.4 Sub Plot Analysis

This is where the sum of squares of the sub plot factors are computed and

these have been illustrated as below:

Cross tabulation of Machine type and machine wear (MW)

M, M, M, W Totals
W, 4.4 4.8 5.7 14.9
W, 5.4 5.4 5.3 16.1
W, 5.8 5.5 4.8 16.1

Calculating the Machine Wear Sum of Squares (WSS)

It should be noted that the machine wear is the sub plot factor for this
particular experiment being considered for analysis.

_ Z [(W1)? + We)? + Wap)?]

WSS CF
™m
14.9)2 + (16.1)% + (16.1)2
WSS=Z[( )* 4+ (16.1)" + ( )]_82_16
3x3
[222.01 + 259.21 + 259.21]
WSS = Z - — 8216

WSS = Z(w — 82.16)

WSS = 82.27 — 82.16
WSS =0.11
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Calculating the Sum of Squares of the interaction between Machine Type and
Machine Wear

n=9
2 2
(M xW)SS = Z (mywy) (mzws) — CF
i=1,j=1 r
4.4)% 4+ (4.8)* + (5.7)* + - + (4.8)?
(MxW)SSzZ[( )+ (4.8) (r ) (48)°] 8216
[19.36 + 23.04 + 32.49 + -+ + 23.04]
(MxW)SS = Z 3 — 82.16
B [248.23]
(MxW)SS = —g - 82.16

(MxW)SS = 82.74 — 82.16
(MxW)SS = 0.58
Sub Plot Sum of Squares (SPSS) = TSS — All Sums of Squares

Error Sub Plot Sum of Squares (ESPSS)
=TSS — (RSS + MSS + RMSS + MPESS + WSS + (MxW)SS

SPSS =3.39-(0.30 +0.01 + 1.10 + 0.79 + 0.11 + 0.58)
ESPSS = 3.39 — 2.89
SPSS = 0.50
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6.5 Completing the ANOVA Table

Sources of df Sumof Mean Sum Feal Fcrit  Ferit
Variation Squares of Squares (5%) (1%)
Replication r-1=3-1=2 0.30 ? =0.15
Main Plot factor _ _ 0.01 0.005
M) m-1=3-1=2 0.01 — 0.005 0395 = 001
0.79
Error (M) (r-1)(m-1)=2x2=4 0.79 - = 0.395
Sub Plot factor _ _ 0.11 0.055
W) w-1=3-1=2 0.11 = 0.055 T 0.22
Interaction
between M x  (m-1)(w-1)=2x2=4  0.58 058 _ 0.29 9029 _ 1.16
W) 4 0.25
m(r-1)(w-1) =3x2 x 2 0.50
Error (z) ~12 0.50 7 = 0.25
Total rmw-1=27-1=26

Reading of the F-critical or tabulated values from the F-table at the various
assigned levels of significance allowed.
For the case being considered, 1% and 5% levels of significance would be used.

Critical values of F for the 0.05 significance level:
1 2 3 4 5 6

1| 16145 19950 21571 22458 23016 23399
2| 1851 19.00 19.16 19.25  19.30 19.33
3| 1013 9.55 9.28 912 9.01 8.94
4 771 6.94 6.59 6.39 6.26 6.16
5 6.61 579 5.41 519 5.05 495
6 5.99 514 476 453 439 428
7 559 474 435 412 397 387
8 532 4.4% 4.07 3.84 369 358
9 512 426 386 363 348 337

10 4.97 4.10 371 348 333 322

11 484 398 359 336 320 310

12 475 3.89 3.49 3.26 311 3.00

13 467 381 344 318 303 292

14 4.60 3.74 334 311 2.96 285

http://www.sciencepublishinggroup.com 145



Basic Concepts and Applications of Experimental Designs and Analysis

Critical values of F for the 0.01 significance level:

1 2 3 4 5 6
1[4052.19 499952 540334 562462 5763.65 5858.97
2| 0850 9900 9917 9925 9930 09933
3| 3412 3082 2946 2871 2824 2791
4| 2120 [EBEE 1669 1598 1552 1521
5
6
7
8

1626 1327 12.06 1139 1097 10.67
1375 1093 978 915 8.75 8.47
12.25 9.55 8.45 7.85 7.46 7.19
11.26 8.65 7.59 7.01 6.63 6.37

9| 1056 8.02 6.99 6.42 6.06 580
10| 1004 7.56 655 599 564 539
11 9.65 7.21 6.22 567 532 5.07
12 9.33 6.93 505 541 5.06 482
13 9.07 6.70 574 521 486 462
14 8.86 6.52 556 5.04 470 4.46

Sources of Variations Fcal Fcrit (5%0) Fcrit (1%0)
Main Plot Factor (M) 000_2055 — 0.01 df(2,4) = 6.94 df(2,4) = 18.00
0.055
sub Plot Factor (W) =022 df (2,12) = 3.89 df(2,12) = 6.93
Interactions (M x W) % ~1.16 df (2,12) = 3.89 df(2,12) = 6.93

*Note in reading the f tabulated value for the main plot factor, the degree of
freedom of the main plot factor is used against the degree of freedom of the
error (M). However for the subplot factor and the interactions their respective
degrees of freedom are used against the degree of freedom of error (z).

Taking the Decision and Making the Conclusion

Main Plot Factor (Machine Type):
Fcal (0.01) < Fcrit (df 2,4 @ 5% = 6.94)
Fcal (0.01) < Fcrit (df 2,4 @ 1% = 18.00)

Conclusion on Main Plot Factor (Machine Type):
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There is no significance difference between the machine types used in the
experiment at both levels of significance. This means the machine types have a
similar effect.

Subplot Factor (Wear Type):
Fcal (0.22) < Ferit (df 2,12 @ 5% = 3.89)
Fcal (0.22) < Ferit (df 2,12 @ 1% = 6.93)

Conclusion on Subplot (Wear Type).

There is no significant difference between the various wear types. Meaning
the wear types did not differ statistically

Interactions (M x W):
Fcal (1.16) < Fcrit (df 2,12 @ 5% = 3.89)
Fcal (1.16) < Fcrit (df 2,12 @ 1% = 6.93)

Conclusion on Interactions (M x W).

There exists no significance difference. Hence one can conclude that the
interactions between the two did not differ statistically.
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The strip plot design is one of the uncommon experimental designs and thus
most researchers had little or no knowledge of it. Though it has semblance of the
split plot design, it is used differently. This paper examines conditions or
situations that necessitate the use of the strip plot designs and explains
comprehensively with designed examples of experiments on how to handle such
designs. The chapter examines the factor that is mainly used when greater
precision is given to the interactions between the two factors. It also shows how

the two factors are arranged in the design.
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7.1 Introduction

The strip plot design is most uncommon and less used design. However its use
becomes necessary when the experimenter or the researcher needs to handle
certain experiments. It used for analysing two factor experiments in which the
factors to be handled are so large that they cannot be accommodated in a split plot
design or would bring about a condition of heterogeneity in terms of the factors
being considered. For instance in a two factor (subplot factor and main factor)
experiment which involves testing the effects of four (4) tillage methods - subplot
factor; and four (4) soil types - main plot factor on productivity of crops. In the
design of such an experiment since large space is involved, it cannot be
accommodated in a split plot design because large land space is needed and this
would bring about heterogeneity. As a result the appropriate design for such
experiment would be the strip plot design. In the strip plot design, the factors are
handled by arranging them in strips. The factors are arranged and placed in a
horizontal strip, vertical strip and interaction strip. One factor is placed in the
horizontal strip and the second factor in the vertical strip; and the interactions
between the factors placed in the vertical and horizontal strips are observed in the
interaction strip, which is diagonal to the vertical and the horizontal strips.

While in the split plot designs, greater precision is given to the subplot
factors while sacrificing that of the main plot factors; in strip plot designs, the
precision for both the main plot factors and the subplot factors are sacrificed to
give greater precision to only their interactions. Thus this design is only used
when the experimenter needs to give greater precision to the interactions
between the two factors being considered in an experiment. Usually in a strip
plot design, the subplot factors are arranged by randomizing and placed within
the horizontal strips while the main plot factors are placed in the vertical strips.
The interactions between both factors are then seen or observed diagonally

152 http://www.sciencepublishinggroup.com



Chapter 7 Strip Plot Design

between the spaces or field between the vertical and horizontal strips as in the
diagrammatic illustration given below:

REPLICATION 1

B1 B1A1l B1A2 B1A3 B1A4
B2 B2A1 B2A2 B2A3 B2A4
B3 B3Al B3A2 B3A3 B3A4
B4 B4A1 B4A2 B4A3 B4A4
Al A2 A3 A4

REPLICATION 2

B2 B2A2 B2A3 B2A4 B2A1
B3 B3A2 B3A3 B3A4 B3Al
B4 B4A2 B4A3 B4A4 B4A1l
B1 B1A2 B1A3 B1A4 B1A1l
A2 A3 A4 Al

REPLICATION 3

B3 B3A3 B3A4 B3Al B3A2
B4 B4A3 B4A4 B4A1 B4A2
B1 B1A3 B1A4 B1A1l B1A2
B2 B2A3 B2A4 B2A1 B2A2
A3 A4 Al A2

For the purpose of illustrating and explaining the strip plot design, we
proceed to design a strip plot experiment and learn how to analyze it. Assuming
we are considering a strip plot experiment to study the effect on four (4) tillage
methods on four (4) different soil types, we will have a similar design as given
above, where the variables B are the sub plot factors arranged in the vertical
strip and A, the main plot factors arranged the horizontal whereas the
interaction between the subplot factor and the main plot factor.

Thus in the experimental layout, the vertical strip must be divided into four to
contain the four different levels of the main factor A; the horizontal strip must
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also be divided into four to contain the four different levels of the second factor
B. The interaction between the two factors A and B (A x B) is observed in the
interaction strip. This is done for every replication. Therefore if three (3)
replications are to be considered, then the arrangement is done three times.

Analysis of this design is done in three-fold: analyzing the vertical strip, the
horizontal strip and the interaction strip. The vertical analysis is done by first
creating a cross table of the replication and the main factor which in this case is
A. The analysis of the design involves computing the Sum of Squares (SS) due
to the main factor (A); SS due replication; SS due to the interactions between
the main factor (A) and replication (R) — A x R; and then the error SS (x). The
horizontal strip analysis involves creating a cross table of the second factor and
the replication and using it to compute the SS due to the second factor (B); SS
due to the replications; SS due to the interaction between B x R; and the SS due
to error (y). For the analysis of the interaction strip, the cross table of the main
factor and the second factor is generated and then used in computing the SS due
to the interaction of two factors (A x B). Thus the Total SS can be computed by
considering every observation of the experiment while the error SS (z) can be
obtained by subtracting all various variations from the Total SS variations.

Now let us assume a researcher used strip plot design to investigate the effect
of four tillage methods (A) and four different soil types (B) with the experiment
replicated three (3) times and obtained the results as shown in the table below:

REPLICATION 1

B2 1.3 14 1.3 11
B3 1.5 14 1.5 13
B4 14 1.6 1.5 1.6
B1 1.4 1.2 1.7 13

A2 A3 A4 Al
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REPLICATION 2

B1 13 14 14 23
B2 1.4 15 15 13
B3 15 13 13 1.4
B4 1.8 13 1.4 1.4
Al A2 A3 A4
REPLICATION 3
B2 2.4 16 13 2.1
B3 16 2.0 15 2.0
B1 2.4 16 1.4 1.9
B4 1.4 15 17 1.8
A4 A3 Al A2
A A, A A,
B, 11 13 14 13
B, 13 15 14 15
REPLICATION 1 B, 16 14 16 15
B, 13 1.4 12 17
B, 13 1.4 14 23
B, 1.4 15 15 13
REPLICATION 2 B, 15 13 13 14
B, 18 13 14 14
B, 13 2.1 16 2.4
B, 15 2.0 2.0 16
REPLICATION 3 B, 14 1.9 16 2.4
B, 17 18 15 14

7.2 For the Vertical Strip Analysis

Cross tabulation of Replication and Tillage Method (R x A)

http://www.sciencepublishinggroup.com
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Al A2 A3 A4 Rep Totals
REPLICATION I 5.3 5.6 5.6 6.0 225
REPLICATION Il 6.0 5.5 5.6 6.4 235
REPLICATION Il 5.9 7.8 6.7 7.8 28.2
Tillage Method Totals 17.2 18.9 17.9 20.2
Grand Total 74.2

Calculating the Grand Total (GT)
n=12

GT = Z (53 +5.6+5.6+ 6.0+ +7.8) =74.2

i=1,)=1

Calculating the Correction Factor (CF)

GT)?
F= (ralz
74.2)2
CF= %
P 5505.64
48
CF = 114.70

where r=no. of replications a=no. of levels of tillage methods, b=no. of levels of
soil.

At this point one must compute the sum of squares for items or factor within
the vertical strip and these are done be done and illustrated below:

Calculating the Total Sum of Squares (TSS)

TSS = Z sum of square of all observations — CF

n=48

TSS = Z (a1 by rl)z + o (a2b3r3)2 —CF
i=1,=1k=1
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TSS = Z[(1.1)2 + (1.3)% + (1.4)% + (1.3)% + - + (1.4)%] — 114.70

TSS = 2[1.21 +1.69 + 196+ 1.69 + --- + 1.96] —114.70

TSS = 118.96 —114.70
TSS = 4.26

Calculating the Replication Sum of Squares (RSS)

RSS = Z [(Ri)? + (Rap)” + (R3y)’]

— CF
ab ¢
22.5)2 + (23.5)2 + (28.2)?
RSS=Z[( )+ @357+ @D 1,00
4 x4
[506.25 + 552.25 + 795.24]
RSS = Z = — 11470

[1853.74]
RSS = Z(T — 114.70)

RSS = 115.86 — 114.70
RSS =1.16

Calculating the Tillage Method Sum of Squares (ASS)

ASS = z [(A17)° + (A2p)” + (A3 + (Aap)’]

CF
br
17.2) + (18.9)% + (17.9)% + (20.2)?
ASS=Z[( )"+ (18.9)" + (17.9) + (20.2)7] .
4x3
[295.84 + 357.21 + 320.41 + 408.04]
ASS = Z = — 11470

[1381.5]
ASS = Z(T — 114.70)

ASS =115.13 — 114.70
ASS =0.42

Calculating the Replication and Tillage Method Sum of Squares (RASS)
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Note: one is expected to use the cross tabulation table for replication and

machine type

n=12 (Ayr)? + + (Ayr)?
i=1j=1
5.3)% 4 (5.6)* + (5.6)* + -+ + (7.8)*
RASSZZ[( Lreo (4 ) T 11470
[28.09 + 31.36 + 31.36 + - + 60.84]
RASS = Z 2 — 114.70

[466.76 |
RASS = Z — 11470

RASS = (116.69 — 114.70)
RASS =1.99
Error (x)Sum of Squares (for the vertical strip) = RASS — RSS — ASS
E(x)SS = RASS — RSS — ASS
E(x)SS = 1.99 — 1.16 — 0.42
E(x)SS = 0.41

7.3 For the Horizontal Strip Analysis

Cross tabulation of Replication and Soil Type (R x B)

B1 B2 B3 B4 Rep Totals
REPLICATION I 5.6 51 5.7 6.1 225
REPLICATION II 6.4 5.7 55 5.9 235
REPLICATION I 7.3 7.4 7.1 6.4 28.2
Soil Type Totals 19.3 18.2 18.3 184
Grand Total 74.2
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Calculating the Replication Sum of Squares (RSS)

RSS = Z [(Ri;)* + (RZT)Z + (R3T)2]

— CF
ab
22.5)2 4 (23.5)% + (28.2)2
RSS=Z[( )+ (2357 + (28271 114.70
4 x4
[ 506.25 + 552.25 + 795.24]
RSS = Z G — 114.70

[1853.74]
RSS = Z(T — 114.70)

RSS = 115.86 — 114.70
RSS =1.16

Calculating the Soil Type Sum of Squares (BSS)

z [(B1,)* + (B2;)* + (B3;)* + (By,)?] B

BSS = CF
ar
19.3)? + (18.2)% + (18.3)% + (18.4)?
BSS:z[( )" +(18.2)7 + (18.3)° + (184)°] 11470
4x3
[372.49 4+ 331.24 + 334.89 + 338.56]
BSS = z 17 — 114.70

[1377.18]
BSS = Z(T — 114.70)

BSS = 114.77 — 114.70
BSS = 0.07

Calculating the Replication and Tillage Method Sum of Squares (RBSS)

Note: one is expected to use the cross tabulation table for replication and
machine type

CF

n=12 (B r )2 + n (B - )2
RBSS = Z 1 SO

a
i=1,j=1
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_ Z [(5.6)2 + (5.1)2 + (5.7)2 + - + (6.4)?]

RBSS 2 — 114.70
[31.36 + 26.01 + 32.49 + --- + 40.96]
RBSS = Z 2 — 114.70

[465 ]
RBSS = ZT — 114.70

RBSS = (116.25 — 114.70)
RBSS = 1.55
Error (y) Sum of Squares (for the horizontal strip) = RBSS — RSS — BSS
E(y)SS = RBSS — RSS — BSS
E(y)SS = 1.55-1.16 — 0.07
E(y)SS = 0.32

7.4 For the Interaction Strip Analysis

Cross tabulation of Tillage Method (A) and Soil Type (B) (A x B)

Al A2 A3 A4 B Totals
B1 4.0 4.7 4.2 6.4 19.3
B2 3.8 4.9 45 5.0 18.2
B3 4.3 4.8 4.7 45 18.3
B4 5.1 45 45 4.3 18.4
ATOTAL 17.2 18.9 17.9 20.2 74.2

Calculating the Sum of Squares of the interaction between Tillage Method

and Soil Type
nilé (B2 + oot (A4 By)?
(AxB)SS = -
i=1,j=1 "
) 2 2.4 ... 2
s = Z[(M) +(4.7)% + (r4-2) Tt (3T a0
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AxB)SS = Z [16 + 22.09 + 17.64 + --- + 18.49]
(AxB)SS = .

[248.23 ]
(AxB)SS = ZT — 114.70

(AxB)SS = 116.42 — 114.70
(AxB)SS = 1.72
Error (z) Sumof Squares (E(z)SS)

— 114.70

= TSS — (RSS + ASS + E(x)SS + BSS + (AxB)SS + E(¥)SS

E(z)SS =4.26 — (1.16 + 0.42 + 0.41 + 0.07 + 1.72 + 0.32)

E(2)SS = 4.26 — 4.1
E(2)SS = 0.16

7.5 Completing the ANOVA Table

Sources of df Sum of Mean Sum of
Variation Squares (SS) Squares (MSS)
Replication r-1=3-1=2 1.16 # =0.58
Main factor - 0.42
Tillage Method a-1=4-1=3 0.42 T =0.14
(A)
Error (x) (r-1)(a-1) =2x3=6 0.41 0'—:1 = 0.07
Sub factor — Soil _ _ 0.07
type (B) b-1=4-1=3 0.07 — = 002
(r-1)(b-1) = (3-1)(4-1) 032
Error (y) —2%3=6 0.32 — = 0.53
Interaction
between — Tillage  (a-1)(b-1) = (4-1)(4-1) 172
Method x Soil =3x3=9 172 5 Uk
Type (A x B)
(r-1)(a-1)(b-1) =(3-1)(4- 0.16
Error (z) 1)(4-1) =2 x3x3 = 18 0.16 S 0.01
Total rab-1=48 -1 =47 4.26

Fcal

MSS(A)

MSS (error x)
_ 0.14

=007 2

MSS(4)
MSS(errory)
2

=m = 0.04

MSS(4)

MSS(error z)
0.19

=001 *?
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Reading of the F-critical or tabulated values from the F- table at the various
assigned levels of significance allowed.

For the case being considered, 1% and 5% levels of significance would be used.

F-critical table at 5% (0.05)

Critical values of F for the 0.05 significance level:
1 2 3 4 = 6 7 8 9 10
16145 19950 21571 22458 23016 23399 23677 23888 24054 24188
1851 19.00 1916 1925 1930 1933 1935 1937 19.39 1940
10.13 9.55 9.28 9.12 9.01 8.94 .89 8.85 8.81 8.79
7.1 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 596
6.61 579 541 5.19 5.05 495 488 482 477 474
5.99 5.14 78 453 4.39 428 421 415 410 4.06
559 474 435 412 397 387 379 373 368 364
532 446 407 384 360 358 350 344 339 335
512 426 3.86 363 348 337 3.29 323 3.18 3.14
10 497 410 371 348 333 322 314 307 302 298
1 4.84 398 359 3.36 3.20 3.10 30 295 2.90 285
12 475 3.89 349 3.26 311 3.00 291 285 2.80 275
13 467 381 3M 318 303 292 283 277 271 267
14 460 3.74 334 311 296 285 276 2.70 2.85 260
15 454 368 329 3.06 2.90 279 27 264 2.59 254
16 449 363 324 3.01 285 274 266 259 254 249
17 445 350 320 297 2381 270 261 255 249 245
18 44 3.56 3.16 293 277 266 258 2.51 pag 241
19 438 352 313 290 274 263 254 248 242 238

WO ~NOOE WS

F-critical table at 1% (0.01)

Critical values of F for the 0.01 significance level:
1 2 3 4 5 6 7 8 9 10
405219 499952 540334 562462 576365 585897 592833 598110 602250 605585
9850 9900 9917 9925 9930 9933 9936 9937 9939 9940
3412 3082 2046 2871 2824 2791 2767 2749 2735 2723
2120 1800 1669 1598 1552 1521 1498 1480 14866 1455
1626 1327 1206 1139 1097 1067 1046 1029 1016 1005
1375 1083 978 915 875 847 826 810 798 787
1225 955 845 785 746 719 699 684 672 662
11.26 365 759 7.01 6.63 637 6.18 6.03 591 581
10.56 3.02 6.99 6.42 6.06 580 561 547 535 526
10| 1004 756 655 599 564 539 520 506 404 485
11 965 721 622 567 532 507 489 474 463 454
12 933 693 595 541 506 482 464 450 439 430
13 907 670 574 521 486 462 444 430 419 410
14 8.86 6.52 556 504 470 446 428 414 403 394
15 868 6.36 542 489 456 432 414 400 390 381
16 853 623 529 477 444 420 403 389 378 369
17 840 611 519 467 434 410 3903 379 368 359
18 829 6.01 509 458 425 402 384 a7 360 351
19 819 503 501 450 417 394 377 363 352 343

CoO~N®D oW S

Note: The read values from the table have been highlighted to show how the
F-critical values read from the F-table. The values are always read using the
degree of freedom of a particular source of variation against the degree of
freedom of a particular error.
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Sources of Variations Fcal Fcrit (5%) Fcrit (1%)
Main Plot Factor (A) % ) df(3,6) = 4.76 df(3,6) = 9.78
0.02
Sub Plot Factor (B) = 0.04 df (3,6) =4.76 df(3,6) =9.78
Interactions ( A x B) % ~1.16 df (9,18) =2.46 df(9,18) = 3.60

7.6 Taking the Decision and Making the Conclusion

Main Plot Factor (Tillage Method):
Fcal (2) < Fcerit (df 3,6 @ 5% = 4.76)
Fcal (2) < Ferit (df 3,6 @ 1% = 9.78)

Conclusion on Main Plot Factor (Soil Type):

There is no significance difference exists between the tillage methods (A)
used in the experiment at both levels of significance. Thus the tillage methods

are similar.

Subplot Factor or Second Factor (Soil Type):
Fcal (0.04) < Fcrit (df 3,6 @ 5% = 4.76)
Fcal (0.04) < Fcrit (df 3,6 @ 1% = 9.78)

Conclusion on Subplot (Soil Type)

No significant difference exists between the various soil types. Meaning the

soil types did not differ statistically

Interactions (M x W):
Fcal (1.16) < Fcrit (df 9,18 @ 5% = 2.46)
Fcal (1.16) < Fcrit (df 9,18 @ 1% = 3.60)
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Conclusion on Interactions (A x B)

There exists no significance difference. Hence one can conclude that the

interactions between the main and sub factors did not differ statistically.
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