| Peer-Reviewed

Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health

Received: 13 June 2022    Accepted: 29 August 2022    Published: 14 September 2022
Views:       Downloads:
Abstract

Water is the main water requirement of the human body. However, 80% of water-related diseases affect people in developing countries. Physicochemical analyzes (nutrient salts, mineral salts, physical parameters) were carried out on water points (springs, boreholes, wells and taps) in order to assess the level of contamination of drinking water in the city of Daloa. A total of 18 drinking water quality parameters were determined using standard water analysis techniques and the values obtained were compared to the drinking water standards recommended by the World Health Organization (WHO) and the Environmental Protection Agency (EPA). The descriptive analysis of the parameters showed that the waters have an acid pH with a more pronounced acidity in groundwater (pH 4.25 – 5.88). That made them non-compliant with the WHO standard (6.5 – 8.5). In addition, the temperature of the waters studied (25.2 – 28.4°C) is higher than the standard (25°C) for all the water points except tap R1 (24.3°C). Furthermore, these waters are weakly mineralized with conductivities (0.73 – 4.28 mg/L) and levels of total dissolved solids (0.32 – 2.41 mg/L) which meet WHO standards. Also, 4 water points (44.44%) are contaminated by nitrites; 8 (88.88%) are contaminated with ammonium and all the water points (100%) have chemical oxygen demand values above the WHO standard (10 mg/L). However, calcium (0.276 – 0.601 mg/L), magnesium (0.205 – 0.256 mg/L), sodium (20.37 – 37.13 mg/L), potassium (0.198 – 0.433 mg/L), sulfates (0.69 – 15.98 mg/L), chlorides (8.88 – 26.63 mg/L), orthophosphates (0.01 to 0.26 mg/L), nitrates (0. 93 – 28.13 mg/L) and turbidity (0.16 – 4.16) comply with WHO standards for drinking water which are respectively 100 mg/L, 50 mg/L, 200 mg/ L, 12 mg/L, 250 mg/L, 250 mg/L, 0.5 mg/L, 50 mg/L and 5 NTU. Moreover, all the waters sampled have a total nitrogen level (0.22 to 0.56 mg/L) that comply with the EPA standard (10 mg/L) for human consumption. In general, the physico-chemical quality of the waters sampled is acceptable but in some cases, it requires a specific treatment (filtration, adsorption, etc) before consumption.

Published in Journal of Health and Environmental Research (Volume 8, Issue 3)
DOI 10.11648/j.jher.20220803.13
Page(s) 186-196
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Physico-chemical Parameters, Wells, Springs, Boreholes, Drinking Water, Daloa

References
[1] Gohar, A. A., & Cashman, A. A. (2016). A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems, 147, 51–64.
[2] Mohammadpour, A., Gharehchahi, E., Badeenezhad, A., Parseh, I., Khaksefidi, R., Golaki, M., Dehbandi, R., Azhdarpoor, A., Derakhshan, Z., Rodriguez-Chueca, J., & Giannakis, S. (2022). Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water, 14 (4), 564.
[3] M’baye, D. (1988). Contribution à l’étude des besoins hydriques pendant la pratique du sport; cas particulier de l’interval-traning au sprint, en milieu tropical. 51p.
[4] Batool, A., Aziz, S., Imad, S., Kazmi, S. S., Shafqat, M., & Ghufran, M. A. (2018). Physico-chemical quality of drinking water and human health: a study of salt range Pakistan. Int J Hydro., 2 (6), 668‒677.
[5] Hanrahan, G. (2012). Surface and Groundwater monitoring. In Key concepts in Environmental Chemistry, Academic Press, Elservier, Amsterdam, 109-152.
[6] Dippong, T., Mihali, C., Rosca, O. M., Marian, M., Payer, M. M., Țîbîrnac, M., Bud, S., Coman, G., Kovacs, E. & Hoaghia, M. A. (2021). Physico-chemical characterization of water wells from Remeti, Maramures, Studia UBB Chemia, LXVI, 2, 197-212.
[7] WHO (World Health Organization). (2011). Guidelines for drinking-water quality - 4th edition. Geneva, Switzerland. 564p.
[8] Bras, A., Evens, E., Obicson, L., Brasseur, P., Pape, W. J., & Raccurt C. P. (2007). Évaluation du risque biologique dû à Cryptosporidium sp présent dans l’eau de boisson à Port-au-Prince (Haïti), Environnement, Risques & Santé, 6 (5), 355-364.
[9] Timoléon, A. B., & Fulbert, B. (2013). Caractérisation physicochimique et chloration des eaux de puits consommées dans la ville de Brazzaville-Congo (Physicochemical Characterization and Chlorination of Well Water Consumed in Brazzaville Congo). J. Mater. Environ. Sci., 4 (5), 605-612.
[10] Yacine, B-A., Gaudremeau, J., Gerbe, B., Khamsing, F., & Rabatel Y. (2004). Eau, Ressources et menaces. 30p.
[11] Ouattara, L. Y. (2016). Etude des paramètres physico-chimiques et microbiologiques des eaux de puits traditionnels à usage domestique dans la région de Soubré: cas de Daba Dagnogo et Gnipi 2. Mémoire de Master, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire, 65p.
[12] Diarra, A., Gui, C. D., & Secongo, L. G. (2016). Crise de l’eau potable en milieu urbain: cas de la ville de Daloa. Revue de géographie de l’Université Ouaga I Pr Joseph KI-ZERBO, 2 (5), 123-151.
[13] Awomon, née A. D. F., Coulibaly, M., Niamke, G. M., & Santos, D. S. (2018). La problématique de l’approvisionnement en eau potable et le développement des maladies a transmission hydrique dans les quartiers d’extension Orly de la ville de Daloa (Côte d’Ivoire). Revue Espace, Territoires, Sociétés et Santé, 1 (2), 91-108.
[14] RGPH (Recensement General de la Population et de l’Habitat). (2021). Résultats globaux 2021, 37 p.
[15] AFNOR (Association Française de Normalisation). (1994). Qualité de l’Eau; Environnement. 1st Edition, AFNOR, Paris, 861p.
[16] Ohou-Yao, M. J. A., Ouattara, L. Y., Yapo, O. B., & Mambo, V. (2017). Impacts of Environmental Management on the Quality of Traditional Well Water in the Soubré Region (South-West of Côte d’Ivoire). Journal of Water Resource and Protection, 9, 1634-1644.
[17] Eblin, S. G., Soro, G. M., Sombo, A. P., Aka, N., Kambiré, O., & Soro, N. S. S. (2014). Hydrochimie des eaux souterraines de la région d'Adiaké (Sud-Est côtier de la Cote d'Ivoire). Larhyss Journal, 17, 193-214.
[18] Orelien, F. (2017). Etude de la qualité de l’eau destinée à la consommation humaine dans le sous-bassin versant de Ravine Diable (Anse-à-Veau). Master de spécialisation en sciences et gestion de l'environnement dans les pays en développement, Université de Liège et Université catholique de Louvain, 85p.
[19] Degbey, C., Makoutode, M., Fayomi, B., & Brouwer, C. (2010). La qualité de l’eau de boisson en milieu professionnel à Godomey en 2009 au Bénin Afrique de l’Ouest. Journal International de Santé au travail, 12, 15-22.
[20] WHO (World Health Organization). (2008). Guidelines for Drinking-Water Quality. 3rd Edition, WHO: Geneva, Switzerland.
[21] Orou, R. K., Coulibaly, K. J., Tanoh, G. A., Ahoussi, E. K., Kissiedou, P. E., Soro, D. T. & Soro N. (2016). Qualité et vulnérabilité des eaux d’aquifère d’altérites dans les sous-préfectures de Grand-Morié et d’Azaguié dans le département d’Agboville au sud-est de la Côte d’Ivoire. Rev. Ivoir. Sci. Technol., 28, 243-272.
[22] Yao, K. T., Oga, M. S., Fouché, O., Baka, D., Pernelle, C., & Biémi J. (2012). Evaluation de la potabilité chimique des eaux souterraines dans un bassin versant tropical: cas du sud-ouest de la Côte d’Ivoire. International Journal of Biology and Chemistry Sciences, 6, 7069- 7086.
[23] Bakouan, C., Guel, B. & Hanston, A-L. (2017). Caractérisation physico-chimique des eaux des forages des villages de Tanlili et Lilgomdé dans la région du Nord du Burkina Faso-Corrélation entre les paramètres physico-chimiques. Afrique Science, 13 (6), 325-337.
[24] Adjiri, O. A., Koné, B., Aka, N., Djabakaté, I., & Dibi B. (2019). Caractérisation physico-chimique et source de la minéralisation des eaux souterraines des départements de Daloa et Zoukougbeu. Int. J. Biol. Chem. Sci., 13 (4), 2388-2401.
[25] Orou, R. K., Soro, G., Soro, D. T., Fossou, R. M. N., Onetie, O. Z., Ahoussi, E. K., & Soro, N. (2016). Variation Saisonnière De La Qualité Physico-Chimique Des Eaux Souterraines Des Aquifères d’Altérites Du Département d’Agboville (Sud-Est De La Côte d’Ivoire). European Scientific Journal, 12 (17), 213-240.
[26] Ahoussi, K. E., Soro, N., Koffi, Y. B., Soro, G. & Biemi, J. (2010). Origine de la minéralisation des eaux des aquifères discontinus sous couvert forestier de la zone Sud de la Côte d’Ivoire: cas de la région d’Abidjan-Agboville International Journal of Biological and Chemical Sciences, 4 (3), 782-797.
[27] Ahoussi, K. E., Keumean, N. K., Kouassi, M. A., & Koffi, B. Y. (2018). Etude des caractéristiques hydrogéochimiques et microbiologiques des eaux de consommation de la zone périurbaine de la ville de Man: cas du village de Kpangouin (Côte d’Ivoire). Int. J. Biol. Chem. Sci., 11 (6), 3018-3033.
[28] Aka, N., Bamba, S. B., Soro, G., & Soro, N. (2013). Étude hydrochimique et microbiologique des nappes d’altérites sous climat tropical humide: cas du département d’Abengourou (sud-est de la cote d’ivoire). Larhyss Journal, 16, 31-52.
[29] Adjiri, O. A., Aka, N, Soro, T. D., Afessi, A. C., Konaté, D., & Soro N. (2018). Caractérisation des ressources en eaux alternatives de la ville de Daloa: impacts sur la santé et implications dans le développement régional. astee-tsm.fr., 12, 89-114.
[30] Ahoussi, K. E., Koffi, Y. B., Kouassi, A. M., Soro, G., & Biemi, J. (2013). Étude hydrochimique et microbiologique des eaux de source de l’ouest montagneux de la Côte d’Ivoire: Cas du village de Mangouin-Yrongouin (sous-préfecture de Biankouman). Journal of Applied Biosciences, 63, 4703-4719.
[31] Moussima, Y. D. A., Tiemeni, A. A., Zing, Z. B., Nenkam, O. T. L. L., Aboubakar, A., Nzeket, A. B., Tcholong, F. B. H., & Mewouo M. Y. C. (2020). Qualité physico-chimique et bactériologique des eaux souterraines et risques sanitaires dans quelques quartiers de Yaoundé VII, Cameroun. Int. J. Biol. Chem. Sci., 14 (5), 1902-1920.
[32] Matini, L., Moutou, J. M., & Kongo-Mantono, M. S. (2009). Evaluation hydro-chimique des eaux souterraines en milieu urbain au Sud-Ouest de Brazzaville, Congo. Afrique SCIENCE 05 (1), 82-98.
[33] Ligban, R., Gone, D. L., Kamagate, B., Saley, B. M., & Biemi J. (2009). Processus hydrogéochimiques et origine des sources naturelles dans le degré carré de Daloa (Centre ouest de la Côte d’Ivoire). Int. J. Biol. Chem. Sci., 3 (1), 38-47.
[34] Poulichet, E. F., Seidel, J.-L., & Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Wat. Res., 36 (4), 1102-1105.
[35] Gnamba, F. M., Baka, B., Sombo, A. P., Kpan, O. J., Oga, Y. M. (2019). Analyse quantitative et qualitative des ressources en eaux souterraines de la region de katiola (Côte d’Ivoire). Larhyss Journal, 40, 117-134.
[36] Elmarkhi, M., Sadek, S., Elkharrim, K., Benelharkati, F., ElKhayyat, F., & Belghyti, D. (2017). Assessment of Groundwater Water Quality in M’nasra (Morocco). Journal of Water Resource and Protection, 9, 111-120.
[37] Gouaidia, L., Guefaifia, O., Boudoukha, A., & Hemila, M. L. (2013). Evaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: Exemple de la plaine de Meskiana, nord-est algérien. Geo-Eco-Trop, 37 (1), 81-92.
[38] Mangoua-Allali, A. L. C., Kouamé, N. A. C., & Coulibaly, L. (2021). Évaluation de la qualité physico-chimique et bactériologique des eaux de puits et du marigot de la ville de Bocanda, Côte d’Ivoire. Afrique SCIENCE, 19 (3), 16-27.
[39] Okoundé, K. J.-E., Ringo, F. A., Carine, N. K., Ouassa, P., Adjoa, M. H. A., Expédit, W. V. (2022). Evaluation of the Physico-Chemical Quality and Potability of Groundwater Consumption in Department of Collines at Benin. Journal of Geoscience and Environment Protection, 10, 29-48.
[40] Mahamat, S. A. M., Maoudombaye, T., Abdelsalam, T. N., & Loukhman, B. (2015). Évaluation de la qualité physico-chimique des eaux d’adduction publique de la Société Tchadienne des Eaux à N’djamena au Tchad. Journal of Applied Biosciences, 95, 8973-8980.
[41] Ojukwu, O. G., & Nwankwoala, O. H. (2022). Assessment of Groundwater Quality in Parts of Port Harcourt Metropolis. Journal of Health and Environmental Research, 8 (2), 89-95.
[42] N’Guettia, G. K., Mangoua, O. M. J., Aboua, N. K., Douagui, G. A., & Gone, D. L. (2019). Caractérisation hydrogéochimique des eaux souterraines du bassin versant de la Baya, Est Côte d'Ivoire, Int. J. Biol. Chem. Sci., 13 (1), 574-585.
[43] Gupta, N., Pandey, P., Hussain, J. (2017). Effect of physicochemical and biologicalparameters on the qualityof river water of Narmada, Madhya Pradesh, India, Water Science, 31, 11–23.
[44] Mouncherou, O., Moundi, A., Ndam, N. J. R., Andrew, A. A., & Wandji, P. (2011). Paramètres chimiques et source lithologique de la minéralisation des eaux souterraines des aquifères du Plateau Bamoun, Ligne Volcanique du Cameroun. Review of the Bulgarian Geological Society, 72 (3), 67–78.
[45] Mehounou, J. P., Josse, R. G., Dossou-Yovo, P., Senou, S. F., Toklo, R. M., (2016). Caractérisation physico-chimique et microbiologique des eaux souterraines et superficielles dans la zone de production cotonnière d’Aplahoué, J. Appl. Biosci., 103, 9841-9853.
[46] Kouyaté, A., Konan, K. S., Tigori, M. A., Sanou, A., Kéita, L., Dongui, B. K., Niamien, P. M., Trokourey, A., & Dibi B. (2021). Assessment of the chemical quality of a water resource in Daloa city, central - western Côte d'Ivoire. J. Mater. Environ. Sci., 12 (02), 373-383.
[47] Ohou-Yao, M. J. A., Séka, A. M., Mambo, V., Yapo, O. B., Konan, K. F. & Houénou, P. V. (2014). Contamination des eaux de puits traditionnels par les nitrates sur le bassin versant de la Lobo (Buyo, sud-ouest de la Cote d’Ivoire). Journal of Applied Biosciences, 78, 6654-6665.
[48] Bakouan, C. (2018). Caractérisation de quelques sites latéritiques du Burkina Faso: application à l'élimination de l'arsenic (III) et (V) dans les eaux souterraines. Thèse de Doctorat en cotutelle, Université Ouaga I Pr JKZ et de l’Université de Mons, 271 p.
[49] Rylander, R. (2014). Magnesium in drinking water - a case for prevention? Journal of Water and Health, 12, 34-40.
[50] Ehoussou, K. M., Kouassi, A. M., & Kamagaté, B. (2019). Caractérisation hydrogéochimique des aquifères fissurés de la région du bélier, centre de la Côte D’Ivoire, Rev. Ivoir. Sci. Technol., 33, 137-160.
[51] Mahamane, A. A., & Guel, Boubié (2015). Caractérisations physico-chimiques des eaux souterraines de la localité de Yamtenga (Burkina Faso), Int. J. Biol. Chem. Sci., 9 (1), 517-533.
[52] Singh, T. B., Bala, I., & Singh, D. (1999). Assessment of ground water quality of Paonta Sahib (H. P.). Poll Res., 18 (1), 111–114.
[53] Lakhili, F., Benabdelhadi, M., Bouderka, N., Lahrach, H., & Lahrach, A. (2015). Etude de la qualité physico-chimique et de la contamination métallique des eaux de surface du bassin versant de Beht (Maroc). European Scientific Journal, 11 (11), 132-147.
[54] Mwanza, B. P., Katond, J. P., & Hanocq P. (2019). Evaluation de la qualité physico chimique et bactériologique des eaux de puits dans le quartier spontané de Luwowoshi (RD Congo), Tropicultura, 37 (2), 627.
[55] Rabilou, S. M., Mousbahou, M. A. M., Laouali, M. S., Ibrahim, N., Habou, I. (2018). Caractérisation Physico-Chimique Des Eaux Souterraines Du Socle De La Région De Zinder (Niger) Pendant La Saison Des Pluies Et La Saison Sèche, European Scientific Journal, 14 (27), 317-345.
[56] Tuthill, R. C. (1961). Elevated Sodium Levels in the Public Drinking Water as a Contributor to Elevated Blood Pressure Levels in the Community. Archives of Environmental Health: An International Journal, 34, 1979-1987.
[57] Adesakin, T. A., Oyewale, A. T., Bayero, U., Mohammed, A. N., Aduwo, I. A., Ahmed, N. D., Abubakar, P. Z., & Barje, I. B. (2020). Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon, 6 (8), e04779.
[58] Nyamangara, J., Jeke, N., Rurinda, J. (2013). Long term nitrate and phosphate loading river water in the Upper Manyame catchment, Zimbabwe. Water SA 39 (5), 637–642.
[59] Ahoussi, K. E., Loko, S., Koffi, Y. B., Soro, G., Oga, Y. M. S. & Soro, N. (2013). Evolution spatio-Temporelle Des Teneurs en Nitrates Des Eaux Souterraines De La Ville d’Abidjan (CÔTE D’IVOIRE). International Journal of Pure & Applied Bioscience, 1 (3), 45-60.
[60] WHO (World Health Organization). (2003). Ammonia in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, 9p.
[61] Yapo, I. R., Mambo V., Alder, A. C., Ohou-Yao, M. J., Ligban, R., Dao, D., Stamm, C. & Bonfoh, B. (2016). Caractérisation saisonnière des eaux de puits à usage maraîchère et domestique de Korhogo (Côte d’Ivoire), Int. J. Biol. Chem. Sci., 10 (3), 1433-1449.
[62] Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D.-P. (2011). Water pollution in Pakistan and its impact on public health — A review. Environment International, 37 (2), 479 –497.
[63] Mahananda, M. R., Mohanty, B. P., & Behera NR. (2010). Physico‒chemical analysis of surface and ground water of Bargarh district, Orissa, India. IJRRAS., 2 (3), 1‒12.
[64] Chery, L., & Barbier J. (2000). Le phosphore dans les eaux souterraines de France. Etat des connaissances. Année 1. Rapport BRGM/RP 40857 -FR, 63p.
[65] Hansen, B., Thorling, L., Schullehner, J., Termansen, M., & Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7, 8566.
[66] EPA (Environmental Protection Agency). (2017). National Primary Drinking Water Regulations. Available at: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (Date of access: 10.05.2022).
[67] Amon, N. L. (2019). Contribution à l’étude des propriétés physico - chimiques des eaux de la lagune Aghien et évaluation des capacités filtrantes d’un matériau céramique poreux à base d’argile locale (Thèse de Doctorat). Université Félix Houphouët-Boigny, Abidjan (Côte d’Ivoire).
[68] Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of The Total Environment, 584-585, 131–144.
[69] Amneera, W. A., Najib, W. A. Z., Yusof, S. R. M., Ragunathan, S. (2013). Water quality index of Perlis River, Malaysia. Int. J. Civ. Environ. Eng., 13 (2), 1–6.
[70] Sanou, A., Coulibaly, S., & Atse B. C. (2020). Évaluation de la capacité de fixation des métaux lourds par les sédiments d’une ferme piscicole en étang. Afrique Science, 16 (4), 85- 97.
[71] Sanou, A., Coulibaly, S., Coulibaly, M., N’dri, S. N., & Atse, B. C. (2021). Assessment of heavy metal contamination of fish from a fish farm by bioconcentration and bioaccumulation factors. Egyptian Journal of Aquatic Biology and Fishes, 25 (1), 821-841.
[72] Sanou, A., Coulibaly, S., Kouaménan N. M., Méité N., N’Dri N. S., & Atsé B. C. (2021). Evaluation of potential risks of farmed fish consumption on human health. RAMReS Sciences des Structures et de la Matière, 4, 17-30.
[73] Suresh, G., Ramasamy, V., Meenakshisundaram V., Venkatachalapathy, R. & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69 (10), 1466-1474.
Cite This Article
  • APA Style

    Lebe Prisca Marie-Sandrine Kouakou, Amadou Kouyate, Ali Sanou, Aka Eric Koffi, Mougo Andre Tigori, et al. (2022). Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health. Journal of Health and Environmental Research, 8(3), 186-196. https://doi.org/10.11648/j.jher.20220803.13

    Copy | Download

    ACS Style

    Lebe Prisca Marie-Sandrine Kouakou; Amadou Kouyate; Ali Sanou; Aka Eric Koffi; Mougo Andre Tigori, et al. Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health. J. Health Environ. Res. 2022, 8(3), 186-196. doi: 10.11648/j.jher.20220803.13

    Copy | Download

    AMA Style

    Lebe Prisca Marie-Sandrine Kouakou, Amadou Kouyate, Ali Sanou, Aka Eric Koffi, Mougo Andre Tigori, et al. Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health. J Health Environ Res. 2022;8(3):186-196. doi: 10.11648/j.jher.20220803.13

    Copy | Download

  • @article{10.11648/j.jher.20220803.13,
      author = {Lebe Prisca Marie-Sandrine Kouakou and Amadou Kouyate and Ali Sanou and Aka Eric Koffi and Mougo Andre Tigori and Namory Meite and Koffi Jean-Paul Bohoussou and Brou Dibi},
      title = {Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health},
      journal = {Journal of Health and Environmental Research},
      volume = {8},
      number = {3},
      pages = {186-196},
      doi = {10.11648/j.jher.20220803.13},
      url = {https://doi.org/10.11648/j.jher.20220803.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jher.20220803.13},
      abstract = {Water is the main water requirement of the human body. However, 80% of water-related diseases affect people in developing countries. Physicochemical analyzes (nutrient salts, mineral salts, physical parameters) were carried out on water points (springs, boreholes, wells and taps) in order to assess the level of contamination of drinking water in the city of Daloa. A total of 18 drinking water quality parameters were determined using standard water analysis techniques and the values obtained were compared to the drinking water standards recommended by the World Health Organization (WHO) and the Environmental Protection Agency (EPA). The descriptive analysis of the parameters showed that the waters have an acid pH with a more pronounced acidity in groundwater (pH 4.25 – 5.88). That made them non-compliant with the WHO standard (6.5 – 8.5). In addition, the temperature of the waters studied (25.2 – 28.4°C) is higher than the standard (25°C) for all the water points except tap R1 (24.3°C). Furthermore, these waters are weakly mineralized with conductivities (0.73 – 4.28 mg/L) and levels of total dissolved solids (0.32 – 2.41 mg/L) which meet WHO standards. Also, 4 water points (44.44%) are contaminated by nitrites; 8 (88.88%) are contaminated with ammonium and all the water points (100%) have chemical oxygen demand values above the WHO standard (10 mg/L). However, calcium (0.276 – 0.601 mg/L), magnesium (0.205 – 0.256 mg/L), sodium (20.37 – 37.13 mg/L), potassium (0.198 – 0.433 mg/L), sulfates (0.69 – 15.98 mg/L), chlorides (8.88 – 26.63 mg/L), orthophosphates (0.01 to 0.26 mg/L), nitrates (0. 93 – 28.13 mg/L) and turbidity (0.16 – 4.16) comply with WHO standards for drinking water which are respectively 100 mg/L, 50 mg/L, 200 mg/ L, 12 mg/L, 250 mg/L, 250 mg/L, 0.5 mg/L, 50 mg/L and 5 NTU. Moreover, all the waters sampled have a total nitrogen level (0.22 to 0.56 mg/L) that comply with the EPA standard (10 mg/L) for human consumption. In general, the physico-chemical quality of the waters sampled is acceptable but in some cases, it requires a specific treatment (filtration, adsorption, etc) before consumption.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Evaluation of the Physico-chemical Quality of Drinking Water in the City of Daloa (Mid-West of Côte d'Ivoire) - Effects on Human Health
    AU  - Lebe Prisca Marie-Sandrine Kouakou
    AU  - Amadou Kouyate
    AU  - Ali Sanou
    AU  - Aka Eric Koffi
    AU  - Mougo Andre Tigori
    AU  - Namory Meite
    AU  - Koffi Jean-Paul Bohoussou
    AU  - Brou Dibi
    Y1  - 2022/09/14
    PY  - 2022
    N1  - https://doi.org/10.11648/j.jher.20220803.13
    DO  - 10.11648/j.jher.20220803.13
    T2  - Journal of Health and Environmental Research
    JF  - Journal of Health and Environmental Research
    JO  - Journal of Health and Environmental Research
    SP  - 186
    EP  - 196
    PB  - Science Publishing Group
    SN  - 2472-3592
    UR  - https://doi.org/10.11648/j.jher.20220803.13
    AB  - Water is the main water requirement of the human body. However, 80% of water-related diseases affect people in developing countries. Physicochemical analyzes (nutrient salts, mineral salts, physical parameters) were carried out on water points (springs, boreholes, wells and taps) in order to assess the level of contamination of drinking water in the city of Daloa. A total of 18 drinking water quality parameters were determined using standard water analysis techniques and the values obtained were compared to the drinking water standards recommended by the World Health Organization (WHO) and the Environmental Protection Agency (EPA). The descriptive analysis of the parameters showed that the waters have an acid pH with a more pronounced acidity in groundwater (pH 4.25 – 5.88). That made them non-compliant with the WHO standard (6.5 – 8.5). In addition, the temperature of the waters studied (25.2 – 28.4°C) is higher than the standard (25°C) for all the water points except tap R1 (24.3°C). Furthermore, these waters are weakly mineralized with conductivities (0.73 – 4.28 mg/L) and levels of total dissolved solids (0.32 – 2.41 mg/L) which meet WHO standards. Also, 4 water points (44.44%) are contaminated by nitrites; 8 (88.88%) are contaminated with ammonium and all the water points (100%) have chemical oxygen demand values above the WHO standard (10 mg/L). However, calcium (0.276 – 0.601 mg/L), magnesium (0.205 – 0.256 mg/L), sodium (20.37 – 37.13 mg/L), potassium (0.198 – 0.433 mg/L), sulfates (0.69 – 15.98 mg/L), chlorides (8.88 – 26.63 mg/L), orthophosphates (0.01 to 0.26 mg/L), nitrates (0. 93 – 28.13 mg/L) and turbidity (0.16 – 4.16) comply with WHO standards for drinking water which are respectively 100 mg/L, 50 mg/L, 200 mg/ L, 12 mg/L, 250 mg/L, 250 mg/L, 0.5 mg/L, 50 mg/L and 5 NTU. Moreover, all the waters sampled have a total nitrogen level (0.22 to 0.56 mg/L) that comply with the EPA standard (10 mg/L) for human consumption. In general, the physico-chemical quality of the waters sampled is acceptable but in some cases, it requires a specific treatment (filtration, adsorption, etc) before consumption.
    VL  - 8
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Laboratoire de Constitution et Réaction de la Matière, Université Félix Houphou?t-Boigny, Abidjan, C?te d'Ivoire

  • Laboratoire des Sciences et Technologies de l’Environnement, Université Jean Lorougnon Guédé, Daloa, C?te d’Ivoire

  • Laboratoire des Procédés Industriels de Synthèses de l’Environnement et des Energies Nouvelles, Institut National Polytechnique Félix Houphou?t-Boigny, Yamoussoukro, C?te d’Ivoire

  • Laboratoire des Sciences et Technologies de l’Environnement, Université Jean Lorougnon Guédé, Daloa, C?te d’Ivoire

  • Laboratoire des Sciences et Technologies de l’Environnement, Université Jean Lorougnon Guédé, Daloa, C?te d’Ivoire

  • Laboratoire de Constitution et Réaction de la Matière, Université Félix Houphou?t-Boigny, Abidjan, C?te d'Ivoire

  • Laboratoire des Sciences et Technologies de l’Environnement, Université Jean Lorougnon Guédé, Daloa, C?te d’Ivoire

  • Laboratoire des Sciences et Technologies de l’Environnement, Université Jean Lorougnon Guédé, Daloa, C?te d’Ivoire

  • Sections