| Peer-Reviewed

Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat

Received: 20 December 2021    Accepted: 17 January 2022    Published: 16 February 2022
Views:       Downloads:
Abstract

Background: Data on safety degree and anti–type 1 diabetic effects of Pterocarpus soyauxii Taub are known, but not on type 2 diabetes yet. Objective: To evaluate preventive effects of P. soyauxii Taub aqueous stem bark extract on dexamethasone–induced insulin resistance and oxidative stress in rat. Materials and Methods: Glucose-overloaded normal Wistar rats were administered with P. soyauxii aqueous plant extract at various doses (38–300 mg.kg) in a single administration. Then, dexamethasone (Dex)–induced insulin-resistant rats received sub-chronic daily administration of the plant extract (38–300 mg/kg) for 21 days. Glibenclamide (10 mg/kg) and metformin (200 mg/kg) were respectively used in each test as standard treatments. Fasting blood glucose was followed for over 3 h in acute test. In sub-chronic test, body weight was followed weekly, glycemia before and at the end of treatment, and insulin sensitivity and serum and tissue biochemical parameters evaluated at the end of treatment. Results: Single administration of the plant extract significantly reduced (p<0.05) the serum glucose level increase of glucose-overloaded rats at lower doses, compared to hyperglycemic control. Its prolonged administration with dexamethasone in normal rats prevented insulin-resistance at all doses (p<0.001) similarly to metformin, without decreasing the body weight loss. The extract also prevented significantly (p<0.001) dexamethasone-induced increased serum creatinine, triglyceride, LDL-cholesterol, and transaminases, and decreased total proteins and HDL-cholesterol. Moreover, it improved significantly (p<0.05 – p<0.001) tissues oxidative stress parameters. Conclusion: P. soyauxii Taub aqueous stem bark extract can prevent the onset of type 2 diabetes.

Published in Journal of Diseases and Medicinal Plants (Volume 8, Issue 1)
DOI 10.11648/j.jdmp.20220801.11
Page(s) 1-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Dexamethasone, Insulin-resistance, Oxidative Stress, Prevention, Pterocarpus soyauxii Taub, Rat

References
[1] WHO (World Health Organisation). (2016). Rapport mondial sur le diabète. www.who.int/diabètes/global-report (10/072018).
[2] IDF (International Diabetes Federation). (2017). IDF diabetes Atlas. 8th edition, Canada, 148 p.
[3] IDF (International Diabetes Federation). (2019). IDF diabetes Atlas. 9th edition, 164 p. www.diabetesatlas.org.
[4] Barquissau, V., & Morio, B. (2011). Physiopathologie de l’insulinorésistance dans le muscle squelettique et implication des fonctions mitochondriales. Nutrition Clinique et Métabolisme, 25: 114–130.
[5] Benaraba, R. (2007). Insulinorésistance et stress oxydant dans le syndrome métabolique: étude expérimentale des effets protecteurs de micro constituants nutritionnels (Polyphénols du thé, de la cannelle et chrome III). Thèse. Laboratoire de Bioénergétique fondamentale et appliquée. Université Joseph-Fourier - Grenoble I. 243p. https://tel.archives-ouvertes.fr/tel-00447570.
[6] Genolet, P., Petite, C., & Petignat, PA. (2012). Diabète cortico-induit, une entité fréquente sans prise en charge standardisée. Revue Médicale Suisse, 8: 800–805.
[7] Hwang, JL., & Weiss, RE. (2014). Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metabolism Ressource Revue, 30: 96–102.
[8] Suh, S., & Park, MK. (2017). Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked Problem. Endocrinology Metabolism, 32: 180–189.
[9] Evans, JL., Maddux, BA., & Goldfine, ID. (2005). The molecular basis for oxidative stress-induced insulin resistance. Antioxydant Redox Signal, 7: 1040–1052.
[10] Capraro, J., & Wiesli, P. (2012). Diabète induit par les stéroïdes. Forum Médical Suisse, 12: 562–565.
[11] Mohd, A. M., Bilal, A. M., Anil, B., Zainab, R., & Dhyal, S. (2017). Bombax ceiba flowers as a source of antidiabetic medicine and vital mineral source. Global Journal of Addiction and Rehabilitation Medicine, 1 (3): (555562): 001–008.
[12] Jaiswal, D., Rai, PK., Mehta, S., Chatterji, S., Shukla, S., Rai, DK., Sharma, G., Bechan, S., khair, S., & Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6: 426–432.
[13] Tchamadeu, MC., Dzeufiet, PDD., Nana, P., Nouga, KCC., Tsofack, NF., Allard, J., Blaes, N., Siagat, R., Zapfack, L., Girolami, JP., Kamtchouing, P., & Dimo, T. (2011). Acute and sub-chronic oral toxicity studies of an aqueous stem bark extract of Pterocarpus soyauxii Taub (Papilionaceae) in rodents. Journal of Ethnopharmacology, 133: 329–335.
[14] Tchamadeu, MC., Dzeufiet, PDD., Nana, P., Blaes, N., Girolami, JP., Tack, I., Kamtchouing, P., & Dimo, T. (2017). Antidiabetic effects of aqueous and dichloromethane/methanol stem bark extracts of Pterocarpus soyauxii Taub (Papilionaceae) on streptozotocin- induced diabetic rats. Pharmacognosy Research, 9: 80–86.
[15] Diehl, K-H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J-M., & Cor van de Vortenbosch. (2001). A good practice guide to the administration of substances and removal of blood, including routes and volumes. Journal of Applied Toxicology, 21: 15–23.
[16] Flintoff K. (2014). Oh Rats! A guide to rat anesthesia for veterinary nurses and technicians. The New Zealand Veterinary Nurse, March 2014: 22–27.
[17] Miller, AL., Golledge Huw, D. R., & Leach, M. C. (2016). The influence of isoflurane anaesthesia on the rat Grimace Scale. Plos One, 11 (11): E0166652.
[18] Ngueguim, T. F., Esse, EC., Dzeufiet PDD., Gounoue, RK., Bilanda, DC., Kamtchouing, P., & Dimo, T., (2016). Oxidative palm oil and sucrose induced hyperglycemia in normal rats: effects of Scleroclarya birrea stem barks acqueous extract. BMC Complementary and Alternative Medicine. (2016). 16 (47); 1-11.
[19] Ahmadi, SA., Boroumand, MA., Gohari-Moghaddam, K., Tajik, P., & Dibaj, SM. (2008). The impact of low serum triglyceride on LDL-cholesterol estimation. Archives of Iranian Medecine, 11 (3): 318–321.
[20] Youmbissi, TJ., Djoumessi, S., Nouedoui, C., Ndobo, P., & Meli, J. (2001). Profil lipidique d’un groupe d’hypertendus camerounais noirs africains. Médecine Afrique Noire, 48: 305–314.
[21] Wilbur, K., Bernhein, F., & Shapiro, O. (1949). Determination of lipid peroxydation. Archives of Biochemistry and Biophysic, 24: 3959–3964. www.tela-botanica.org.
[22] Ellman, GL. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82: 70–77.
[23] Misra, HP., & Fridovish, I. (1972). Determination of the level of superoxide dismutase in whole blood. Yale University Press New Haven, 1972: 101–109.
[24] Sinha, AK. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47: 389–394.
[25] Slack, PT. (1987). Analytical methods manual, 2nd Edition. Leatherhead Food Research Association, Leatherhead, Surrey, (UK) England.
[26] Patil, UK., & Tripathy, MK. (2014). Antidiabetic activity of ethanolic extract of heartwood of bijasar (pterocarpus marsupium roxb.) In streptozotocin-nicotinamide induced type 2 diabetic rats. International Journal of Pharmaceutical Sciences and Research, 5: 5572–5577.
[27] Okwuosa, CN., Unekwe, PC., Achukwu, PU., Udeani, TKC., & Ogidi, UH. (2011). Glucose and triglyceride lowering activity of Pterocarpus santaniloides leaf extracts against dexamethasone induced hyperlipidemia and insulin resistance in rats. African Journal of Biotechnology, 10: 9415–9420.
[28] Mounguengui, S., Tchinda, SJ-B., Ndikontar, MK., Dumarcay, S., Attéké, C., Perrin, D., Gelhaye, E., & Géradin, P. (2016). Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo basin tree species. Annals of forest sciences, 73: 287–296.
[29] Mc Cormick, S., Robson, K., & Bohm, B. (1986). Species –flavonoid relationship reported. Phytochemistry, 25: 1723–1726.
[30] Bezuidenhoudt, BCB., Brandt, EV., & Ferreira, EV. (1987). Flavonoid analogues from Pterocarpus species. Phytochemistry, 26: 531–535.
[31] Adesegun, SA., Fayemiwo, O., Odufuye, B., & Coker, HAB. (2013). α-amylase inhibition and antioxidant activity of Pterocarpus osun Craib. Journal of Natural Products, 6: 90–95.
[32] Tamez-Pérez, HE., Quintanilla-Flores, DL., Rodríguez-Gutiérrez, R., González- González, JG., & Tamez-Peña, AL. (2015). Steroid hyperglycemia: Prevalence, early detection and therapeutic recommendations: A narrative review. World Journal of Diabetes, 6: 1073–1081.
[33] CNPM (collège national de pharmacologie médicale). (2018). Corticoïdes: Les points essentiels. https://pharmacomedicale.org.
[34] Barbera, M., Fierabracci, V., Novelli, M., Bombara, M., Masiello, P., Bergamini, E., & De Tata, V. (2001). Dexamethasone-induced insulin resistance and pancreatic adaptive response in aging rats are not modified by oral vanadylsulfate treatment. European Journal of Endocrinology, 145: 799–806.
[35] Clore, JN., & Thurby-Hay, L. (2009). Glucocorticoid-induced hyperglycemia. Endocrinology and Practise, 15: 469–474.
[36] Buren, J., Liu, HX., Jensen, J., & Eriksson, WJ. (2002). Dexamethasone impairs insulin signaling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. European Journal of Endocrinology, 146: 419–429.
[37] Ruzzin, J., Wagman, AS., & Jensen, J. (2005). Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of selective glycogen synthase kinase-3 inhibitor. Diabetologia, 48: 2119–2130.
[38] Elekofehinti OO. (2015). Saponins: Anti-diabetic principles from medicinal plants – A review. Pathophysiology, 22: 95–103.
[39] Guillaume, D., & Charrouf, Z. (2005). Saponines et métabolites secondaires de l’arganier (Argania spinosa). Cahiers Agricultures, 14: 509-516.
[40] Viollet, B., Foretz, M., & Andreelli, F. (2012). Metformine: le point sur les mécanismes d'action. Correspondances en Métabolismes, Hormones, Diabètes et Nutrition, Edimark, 16 (3): 67–72. hal.inserm.fr.
[41] Madiraju, AK., Erion, DM., Rahimi, Y., Zhang, XM., Braddock, DT., Albright, RA., Prigaro, BJ., Wood, JL., Bhanot, S., MacDonald, MJ., Jurczak, MJ., Camporez, JP., Lee, HY., Cline, GW., Samuel, VT., Kibbey, RG., & Shulman, GI. (2014). Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 510: 542–546.
[42] Azeez, OH., & Kheder, AE. (2012). Effect of Gundelia tournefortii on some biochemical parameters in dexamethasone-induced hyperglycemic and hyperlipidemic mice. Iraqi Journal of Veterinary Sciences, 26: 73–79.
[43] Fofié, CK., Nguelefack-Mbuyo, EP., Tsabang, N., Kamanyi, A., & Nguelefack, TB. (2018). Hypoglycemic Properties of the Aqueous Extract from the Stem Bark of Ceiba pentandra in Dexamethasone-Induced Insulin Resistant Rats. Evidence-Based Complementary and Alternative Medicine, 2018: 1–11.
[44] Severino, C., Brizzi, P., Solinas, A., Secchi, G., Maioli, M., & Tonolo, G. (2002). Low dose of dexamethasone on the rat: a model to study insulin resistance. American journal of physiology endocrinology and metabolism, 283: 367–373.
[45] Vergès, B. (2007). Physiopathologie de la dyslipidémie, du syndrome métabolique et du diabète de type 2. Nutrition, Clinique et Métabolisme, 21: 9–16.
[46] Nkono, BL., Dongmo, S., Dzeufiet, PD., & Kamtchouing, P. (2014). Antihyperglycemic and antioxidant properties of Alstonia boonei De Wild (Apocynaceae) stem bark aqueous extract in dexamethasone-induced hyperglycemic rats. International journal of diabetes research, 3: 27-35.
[47] Mezei, O., Banz, WJ., Steger, RW., Peluso, MR., Winters, TA., & Shay, N. (2003). Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zuker rats and murine RAW 264.7 cells. Journal of Nutrition, 133 (5): 1238–43.
[48] Rimando, AM., Nagmani, R., Feller, DR., & Yokoyama, W. (2005). Pterostilbène, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers lipoproteins and cholesterol in hypercholesterolemia hamsters. Journal of agriculture food chemistry, 53: 3403–3407.
[49] Pari, L., & Amarnath, SM. (2006). Effects of Pterostilbène on hepatic key enzyme of glucose metabolism in streptozotocine and nicotinamide induced diabetic rats. Life sciences, 79: 641–645.
[50] Moll, J. (2008). What are the health benefits of Bluberries? In: about.com cholesterol. About.com Health’s disease and condition content; 1p.
[51] Chakravarty, BK., Gupta, S., Gambhir, SS., & Gode, KK. (1980). Pancreatic beta cell regeneration. A novel antidiabetic mechanism of Pterocarpus marsupium Roxb. Indian journal of pharmacology, 12: 123–127.
[52] Katan, MB., Grundy, SM., Jones, P., Law, M., Miettinen, T., & Paoletti, R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Foundation for Medical Education and Research, 78: 965–978.
[53] Lecerf, JM. (2006). Les phytostérols et les phytostanols: quelle place pour la prévention cardiovasculaire? Cahier Nutrition. Diétetique, 41: 199–305.
[54] SOPDPNA (Scientific Opinion of the Panel on Dietetic Products Nutrition and Allergies). (2008). On a request from Unilever PLC/NV on Plant Sterols and lower/reduced blood cholesterol, reduced the risk of (coronary) heart disease. The EFSA Journal, 781: 1–12.
[55] Séjourné, C. (2009). Mécanismes d’actions des phytostérols au niveau intestinal. Cahiers de nutrition et de diététique, 44: 132–135.
[56] Camus, G. (2013). Action des phytostérols sur le taux de cholestérol et les maladies cardiovasculaires. Planète-Vie. Publié le 23.01.2013. https://planet-vie.ens.fr/content/phytosterols-cholesterol (consulté 08.9.2017).
[57] Arliss, RM., & Biermann, CA. (2002). Do soy isoflavones lower cholesterol, inhibit2 atherosclerosis and play a role in cancer prevention. Holistic Nursing Practice, 16: 40–48.
[58] Shukla, A., Brandsch, C., Bettzieche, A., Hirche, F., Stangl, GI., & Eder, K. (2007). Isoflavone-poor soy protein alters the lipid metabolism of rats by SREBP- mediated down-regulation of hepatic genes. Journal of Nutrition and Biochemestry, 18: 313–321.
[59] Sarkhail, P., Rahmanipour, S., Fadyevatan, S., Mohammadirad, A., Dehghan, G., Amin, G., Shafiee, A., & Abdollahi, M. (2007). Antidiabetic effect of Phlomis anisodonta: Effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Pharmacological Research, 56: 261–266.
[60] Koceir, EA. (2015). Aspects physiopathologiques et bioénergétiques du stress oxydant dans le diabète: [cited 2015 Oct 10]; Available from: http://www.biologie.50webs.com/Download/Aspects%20physiopath%20et%20bioenreg%20du%20stress%20oxydant%20diabete%20KOCEIR.pdf.
[61] Simeoni, J. (7-11 Mars 2006). Dysfonction endothéliale et diabète. D’après les présentations faites au congrès de l’ALFEDIAM. CHU de Strasbourg. 7-11 Mars 2006, Strasbourg, France.
[62] Henry, F., Danoux, L., Charrouf, Z., & Pauly, G. (2004). New potentially active ingredient from Argania spinosa (L.) Skeels cakes. Réseau de valorisation des plantes médicinales.
[63] Kebieche, M. (2009). Activité biochimique des extraits flavonoïdiques de la plante Ranunculus repens L: effet sur le diabète expérimental et l’hépatotoxicité induite par l’Epirubicine. Thèse de Doctorat, Université Mentouri Constantine, République Algérienne Démocratique et Populaire, 143p.
[64] Ghaisas, M., Zope, V., Takawale, A., Navghare, V., Mukesh, T., & Deshpande, A. (2010). Preventive effect of Sphaeranthus indicus during progression of glucocorticoid-induced insulin resistance in mice. Pharmaceutical Biology, 48: 1371– 1375.
[65] Yadav, S., Nand, P., & Gupta, RK. (2015). Formulation and phytochemicals characterization of polyherbal (Tinospora cordifolia, Gymnema sylvestre, Pterocarpus marsupium and Acacia arabica) antidiabetic compressed tablet lozenges. Journal of Pharmacognosy and Phytochemistry, 4: 244–253.
[66] Bouchet, N., Barrier, L., & Fauconneau, B. (1998). Radical scavenging activity and antioxidant proprieties of tannins from Guiera senegalensis (Combretaceae). Phytotherapy research, 12: 159–162.
Cite This Article
  • APA Style

    Marie Claire Tchamadeu, Rosange Yefou Tsangue, Calvin Zangue Bogning, Christian Takoukam Ténézoguang, Patience Emambo, et al. (2022). Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat. Journal of Diseases and Medicinal Plants, 8(1), 1-12. https://doi.org/10.11648/j.jdmp.20220801.11

    Copy | Download

    ACS Style

    Marie Claire Tchamadeu; Rosange Yefou Tsangue; Calvin Zangue Bogning; Christian Takoukam Ténézoguang; Patience Emambo, et al. Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat. J. Dis. Med. Plants 2022, 8(1), 1-12. doi: 10.11648/j.jdmp.20220801.11

    Copy | Download

    AMA Style

    Marie Claire Tchamadeu, Rosange Yefou Tsangue, Calvin Zangue Bogning, Christian Takoukam Ténézoguang, Patience Emambo, et al. Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat. J Dis Med Plants. 2022;8(1):1-12. doi: 10.11648/j.jdmp.20220801.11

    Copy | Download

  • @article{10.11648/j.jdmp.20220801.11,
      author = {Marie Claire Tchamadeu and Rosange Yefou Tsangue and Calvin Zangue Bogning and Christian Takoukam Ténézoguang and Patience Emambo and Paul Désiré Djomeni Dzeufiet and Alain Bertrand Dongmo},
      title = {Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat},
      journal = {Journal of Diseases and Medicinal Plants},
      volume = {8},
      number = {1},
      pages = {1-12},
      doi = {10.11648/j.jdmp.20220801.11},
      url = {https://doi.org/10.11648/j.jdmp.20220801.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20220801.11},
      abstract = {Background: Data on safety degree and anti–type 1 diabetic effects of Pterocarpus soyauxii Taub are known, but not on type 2 diabetes yet. Objective: To evaluate preventive effects of P. soyauxii Taub aqueous stem bark extract on dexamethasone–induced insulin resistance and oxidative stress in rat. Materials and Methods: Glucose-overloaded normal Wistar rats were administered with P. soyauxii aqueous plant extract at various doses (38–300 mg.kg) in a single administration. Then, dexamethasone (Dex)–induced insulin-resistant rats received sub-chronic daily administration of the plant extract (38–300 mg/kg) for 21 days. Glibenclamide (10 mg/kg) and metformin (200 mg/kg) were respectively used in each test as standard treatments. Fasting blood glucose was followed for over 3 h in acute test. In sub-chronic test, body weight was followed weekly, glycemia before and at the end of treatment, and insulin sensitivity and serum and tissue biochemical parameters evaluated at the end of treatment. Results: Single administration of the plant extract significantly reduced (pP. soyauxii Taub aqueous stem bark extract can prevent the onset of type 2 diabetes.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat
    AU  - Marie Claire Tchamadeu
    AU  - Rosange Yefou Tsangue
    AU  - Calvin Zangue Bogning
    AU  - Christian Takoukam Ténézoguang
    AU  - Patience Emambo
    AU  - Paul Désiré Djomeni Dzeufiet
    AU  - Alain Bertrand Dongmo
    Y1  - 2022/02/16
    PY  - 2022
    N1  - https://doi.org/10.11648/j.jdmp.20220801.11
    DO  - 10.11648/j.jdmp.20220801.11
    T2  - Journal of Diseases and Medicinal Plants
    JF  - Journal of Diseases and Medicinal Plants
    JO  - Journal of Diseases and Medicinal Plants
    SP  - 1
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2469-8210
    UR  - https://doi.org/10.11648/j.jdmp.20220801.11
    AB  - Background: Data on safety degree and anti–type 1 diabetic effects of Pterocarpus soyauxii Taub are known, but not on type 2 diabetes yet. Objective: To evaluate preventive effects of P. soyauxii Taub aqueous stem bark extract on dexamethasone–induced insulin resistance and oxidative stress in rat. Materials and Methods: Glucose-overloaded normal Wistar rats were administered with P. soyauxii aqueous plant extract at various doses (38–300 mg.kg) in a single administration. Then, dexamethasone (Dex)–induced insulin-resistant rats received sub-chronic daily administration of the plant extract (38–300 mg/kg) for 21 days. Glibenclamide (10 mg/kg) and metformin (200 mg/kg) were respectively used in each test as standard treatments. Fasting blood glucose was followed for over 3 h in acute test. In sub-chronic test, body weight was followed weekly, glycemia before and at the end of treatment, and insulin sensitivity and serum and tissue biochemical parameters evaluated at the end of treatment. Results: Single administration of the plant extract significantly reduced (pP. soyauxii Taub aqueous stem bark extract can prevent the onset of type 2 diabetes.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon

  • Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon

  • Sections