| Peer-Reviewed

Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo

Received: 20 June 2022    Accepted: 29 July 2022    Published: 17 August 2022
Views:       Downloads:
Abstract

The diversity of bacteria was explored in two different environments in Brazzaville: soil and fermented peppers. The count showed that the total flora is greater in the fermented pepper (9.4. 104 CFU/g) than in the soil of 3.7. CFU/g, bacteria of the Bacillus genus are numerically more important in soil (9.3.104 CFU/g) than in fermented pepper (7.7.104 CFU/g). The morphotypes of all isolates presented small, medium and pink and whitish colored colonies, are catalases positive, protease producers, Gram positive, and spore forming, including one Gram negative isolate. 16S rDNA PCR of the isolates, Agarose Gel electrophoresis, sequencing and in silico analysis of the sequences were performed. The amplicons showed sizes closed to 1500bp, BLASTn analysis of the sequences made it possible to identify Twenty (20) strains, with a predominance Bacillus cereus sensu stricto strains (40%). Taking by environment, six (6) in the soil, namely Bacillus cereus sensu stricto (16.66%), Bacillus thuringiensis (16.66%), Bacillus anthracis (16.66%), Bacillus welmani (16.66%) and a Bacillus albus (16.66%), fourteen (14) strains in fermented peppers namely: Bacillus cereus sensu stricto (21.42%), Bacillus thuringiensis (7.14%), two Pseudomonas sp, Bacillus thuringiensis (3.57%), Bacillus sp (3.57%), Bacillus albus (1), Lysinibacillus sp (3.57%), uncultured (3.57%). All strains produce the proteolytic enzyme with diameters ranging of more than two cm. The phylogenetic inference using 16S rDNA analysis shows that these bacteria are very closed, excepted the Pseudomonas sp and uncultured bacteria, all belong to Bacillus cereus group, forming a coherent taxonomic group.

Published in International Journal of Microbiology and Biotechnology (Volume 7, Issue 3)
DOI 10.11648/j.ijmb.20220703.13
Page(s) 124-134
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Soil, Fermented Peppers, PCR, Sequencing, In Silico Analysis

References
[1] Tano K, Koffi-Nevry R, Koussémon M, Oulé M K. 2008. The effects of different storage temperatures on the quality of fresh Bell pepper (Capsicum annum L.). Agricultural Journal, 3 (2): 157-162.
[2] Collera-Zuniga O, Jiménez, FG, Gordollo RM. 2004. Comparative study of carotenoid composition in three Mexican varieties of Capsicum annuum L. Food Chemistry, 90: 109-114.
[3] Bosland, P. W. 1996. Capsicums: Innovative uses of an ancient crop. p. 479-487. In: J. Janick (ed.), Progress in new crops. ASHS Press, Arlington, VA.
[4] Baral JB and Bosland PW. 2002. An updated synthesis of the Capsicum genus. Capsicum Eggplant Newsl., 21: 11-21.
[5] Mokemiabeka, N. S., Kayath, A. C., Nguimbi, E., Lébonguy, A. A., Eboungabeka, A. G. M., De Mendosa, R., Kéléké, S., Kobawila, S. C., and Botteaux, A., 2016. Microbiological and biochemical assessment of crushed red pepper from Capsicum frutescens preserved in jars and manufactured in local markets in Republic of Congo. International Journal of Biotechnology Research. Vol. 4 (1), pp. 001-010.
[6] Vilain S, Luo Y, Hildreth MB, Brozel VS. 2006. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Applied and Environmental Microbiology 72: 4970- 4977.
[7] P. Pomerantsev, et Stephen H. Leppla. 2013. « The Bacillus cereus Hbl and Nhe Tripartite Enterotoxin Components Assemble Sequentially on the Surface of Target Cells and Are Not Interchangeable ». Édité par Theresa M. Koehler. PLoS 8 (10): e76955. https://doi.org/10.1371/journal.pone.0076955.
[8] Soloka Mabika Armel Faly, Rachel Moyen, Etienne Nguimbi*, Gabriel Ahombo, Raoul Ampa, Aimé Christian Kayath, Alain Vouidibio, Cyr Jonas Morabandza, and Simon Charles Kobawila.: Production, Partial Purification and Based SDS-PAGE Profiles of Caseinolytic Enzyme in two Bacillus Strains Isolated from Fermented Cassava leaves “Ntoba mbodi” in Congo Brazzaville. Journal of Pure and Applied Microbiology, March 2017. vol. 11 (1), p. 77-86.
[9] Choi N. S., Chung D. M., Ryu C. H, K.-S. Yong P., Maeng J, and Kim S. H. Identification of three extracellular proteases from Bacillus subtilis KCTC 3014. J Microbiol. Biotechnol., 2006; 16: 457-464.
[10] A. Anwar, M. Saleemuddin (2000). Alkaline protease from Spilosoma obliqua: potential applications in bio-formulations, Biotechnol. Appl. Biochem. 31 (2) 85–89.
[11] Ngô-Itsouhou, Nguimbi Etienne, Kayath Aimé Christian, Ampa Raoul. Molecular Identification, Phylogenetic Classification and Proteolytic Capacity of Cultivable Bacteria Isolated from Soils in Brazzaville, Republic of Congo. Journal of Biochemestry, Microbiology and Biotechnology, JOBIMB, 2019, Vol 7, No 2, 1-7 https://journal.hibiscuspublisher.com/index.p
[12] Faly Armel Soloka Mabika, Etienne Nguimbi, Aimé Christian Kayath, and Gabriel Ahombo. Molecular Characterization of Bacillus-Genus Bacteria with Fibrinolytic Potential Isolated from Squashes «NTETE» in Brazzaville in the Republic of Congo. American Journal of Microbiological Research, 2020, Vol. 8, No. 1, 7-1.
[13] AFNOR NFX31-412 standard French procedure: 1994, “Soil quality, pre-treatment of samples for physico-chemical analyses.” In: AFNOR (Ed.), Paris. Harrigan, Wilkie F. (1998) Méthodes de laboratoire en microbiologie alimentaire. Éditions professionnelles du Golfe, 1998.
[14] Harrigan, Wilkie F. (1998) Laboratory methods in food microbiology. Gulf Professional Publishing, 1998.
[15] Gibson, T, and Gordon, R. E. (1974). Genus I. Bacillus. In Bergey’s Manual of determinative bacteriology. Williams & Wilkins Co., Baltimore. p. 541.
[16] Health Protection Agency. 2001 1a. Catalase Test. UK Standards for Microbiology Investigations 8 Issue 2. 2.
[17] Voudibio Mbozo A. B. (2010): fermented beverages, on some foodborne pathogens and effect of growth medium on the inhibitory activity. Int. J. Food Safety, 5: 13-20.
[18] Environment Canada. (2010) Pathogenicity and toxicity of risk group II microbial strains on terrestrial organisms. October 2010. Biological Assessment and Standardization Section, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada (unpublished data).
[19] Prita S Borka (2018) Purification and immobilization of thermostable serine alkaline protease from Bacillus subtilis The Pharma Innovation Journal 2018; 7 (5): 622-626.
[20] De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. et Whitman, W. B., 2009. Bergey's Manuel of Systematic Bacteriology, 2nd édition. Volume three, The Firmicutes. Springer.
[21] Nguimbi, E., Morabandza, C., J., Voudibio. A., B., Mbou., B., Miakassissa., S., Soloka., F., 2020. Microbial biodiversity of a traditional food made from squash seeds ''NTETE'' consumed in Brazzaville, Republic of Congo. International journal of Microbiology and Biotechnology, 2578-9686.
[22] Chen and H. Y. Tsen Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. Journal of applied Microbiology 2002, 92, 912- 919.
[23] Altschu, F. S., Gish, W., Miller, W., Myers, W. E., and Lipman. J. D (1990): Basic Local Alignement search Tool. J. Mol. Biol. 215 403-410.
[24] Mouna Cheikh Rouhou Évaluation des classifications phylogénétiques des Bacillaceae basées sur les gènes de l'opéron rrn et de gènes de ménage. Mémoire de Maîtrise, Université du Québec, Decembre 2006.
[25] Hingamp P, Brochier C, Talla E, Gautheret D, Thieffry D, Herrmann C (2008) Metagenome Annotation Using a Distributed Grid of Undergraduate Students. PLoS Biol 6 (11): e296. https://doi.org/10.1371/journal.pbio.0060296).
[26] Sneath P. H. A. and Sokal R. R. (1973). Numerical Taxonomy. Freeman, San Francisco.
[27] Tamura K., Nei M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101: 11030-11035.
[28] Larpent J. P., (2000), introduction à la nouvelle classification bactérienne – principaux groupes bactériens, Edition TEC et Doc Lavoisier, Paris.
[29] E. R. Levine, R. G. Knox, W. T. Lawrence. (1994) Relationships between soil properties and vegetation at the Northern Experimental Forest, Howland, Maine. Remote Sensing of Environment Volume 47, Issue 2, 1994, Pages 231-241.
[30] Fanfani. G: les bactéries du groupe de Bacillus cereus dans les conserves a pH peu acide (petit pois); détection, caractérisation par méthode probabiliste numérisée, moléculaire et anti-bio résistance; M. A; université badji Mokhtar Annaba; thèse; 2014.
[31] Granum PE, O'Sullivan K & Lund T (1999) The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177: 225-229.
[32] Public Health England [PHE] (2009). Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Avilable at: www.gov.uk/government/publications/ready-to-eat-foods-microbiological-safetyassessment-guidelines.
[33] Mossel, D. A. A., Koopman, M. J., and Jongerius, E. (1967). Enumeration of Bacillus cereus in foods. Appl. Microbiol., 15 (3), 650-653.
[34] Tiantian Gao, Yu Ding, Qingping Wu, æJuan Wang, Jumei Zhang, Shubo Yu, Pengfei Yu, Chengcheng Liu, Li Kong, Zhao Feng, Moutong Chen, Shi Wu, Haiyan Zeng and Haoming Wu., 2018. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated From Pasteurized Milk in China, Frontiere in microbiology, p (1-11), doi: 10.3389/fmicb.2018.00533.
[35] Moïse Doria Kaya-Ongoto, Christian Aimé Kayath, Etienne Nguimbi, Aimé Augustin Lebonguy, Stech Anomène Eckzechel Nzaou, Paola Sandra ElengaWilson, and Gabriel Ahombo. Genetic Clearness Novel Strategy of Group I Bacillus Species Isolated from Fermented Food and Beverages by Using Fibrinolytic Enzyme Gene Encoding a Serine-Like Enzyme. Hindawi Journal of Nucleic Acids Volume 2019, Article ID 5484896, 13 pages https://doi.org/10.1155/2019/5484896
[36] Nicholson, W. L., 2002. Roles of Bacillus endospores in the environment. Cellular and Molecular Life Science. 59, 410-416.
[37] Kim, K. M., Lee, J. Y., Kim, C. K., and Kang, J. S. 2009. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 32 (5): 711–715.
[38] Helgason, E., Caugant, D. A., Lecadet, M. M., Chen, Y., Mahillon, J., Lovgreen, A., Hegna, I., Kvaloy, K., Kolsto, A. B. (1998). Genetic diversity of Bacillus cereus/Bacillus thuringiensis isolates from natural sources. Curr. Microbiol. 37, 80-87.
[39] Nguimbi Etienne, Soloka Mabika Faly Armel, Dibangou Valentin, Nzaou Stech Anomène Eckzechel, Kayath Aimé Christian, Moyen Rachel. New Phylogenetic Molecular Markers in Bacteria of the Genus Bacillus: Fibrinolytic Proteases. International Journal of Microbiology and Biotechnology. Vol. 6, No. 3, 2021, pp. 86-94. doi: 10.11648/j.ijmb.20210603.14.
[40] Kumar, S., Stecher G., Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870- 1874.
Cite This Article
  • APA Style

    Isaac Onyankouang, Cyr Jonas Morabandza, Irène Marie Cécile Mboukou Kimbatsa, Faly Armel Soloka Mabika, Itsouhou Ngô, et al. (2022). Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo. International Journal of Microbiology and Biotechnology, 7(3), 124-134. https://doi.org/10.11648/j.ijmb.20220703.13

    Copy | Download

    ACS Style

    Isaac Onyankouang; Cyr Jonas Morabandza; Irène Marie Cécile Mboukou Kimbatsa; Faly Armel Soloka Mabika; Itsouhou Ngô, et al. Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo. Int. J. Microbiol. Biotechnol. 2022, 7(3), 124-134. doi: 10.11648/j.ijmb.20220703.13

    Copy | Download

    AMA Style

    Isaac Onyankouang, Cyr Jonas Morabandza, Irène Marie Cécile Mboukou Kimbatsa, Faly Armel Soloka Mabika, Itsouhou Ngô, et al. Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo. Int J Microbiol Biotechnol. 2022;7(3):124-134. doi: 10.11648/j.ijmb.20220703.13

    Copy | Download

  • @article{10.11648/j.ijmb.20220703.13,
      author = {Isaac Onyankouang and Cyr Jonas Morabandza and Irène Marie Cécile Mboukou Kimbatsa and Faly Armel Soloka Mabika and Itsouhou Ngô and Thantique Moutali Lingouangou and Rachel Moyen and Etienne Nguimbi},
      title = {Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo},
      journal = {International Journal of Microbiology and Biotechnology},
      volume = {7},
      number = {3},
      pages = {124-134},
      doi = {10.11648/j.ijmb.20220703.13},
      url = {https://doi.org/10.11648/j.ijmb.20220703.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmb.20220703.13},
      abstract = {The diversity of bacteria was explored in two different environments in Brazzaville: soil and fermented peppers. The count showed that the total flora is greater in the fermented pepper (9.4. 104 CFU/g) than in the soil of 3.7. CFU/g, bacteria of the Bacillus genus are numerically more important in soil (9.3.104 CFU/g) than in fermented pepper (7.7.104 CFU/g). The morphotypes of all isolates presented small, medium and pink and whitish colored colonies, are catalases positive, protease producers, Gram positive, and spore forming, including one Gram negative isolate. 16S rDNA PCR of the isolates, Agarose Gel electrophoresis, sequencing and in silico analysis of the sequences were performed. The amplicons showed sizes closed to 1500bp, BLASTn analysis of the sequences made it possible to identify Twenty (20) strains, with a predominance Bacillus cereus sensu stricto strains (40%). Taking by environment, six (6) in the soil, namely Bacillus cereus sensu stricto (16.66%), Bacillus thuringiensis (16.66%), Bacillus anthracis (16.66%), Bacillus welmani (16.66%) and a Bacillus albus (16.66%), fourteen (14) strains in fermented peppers namely: Bacillus cereus sensu stricto (21.42%), Bacillus thuringiensis (7.14%), two Pseudomonas sp, Bacillus thuringiensis (3.57%), Bacillus sp (3.57%), Bacillus albus (1), Lysinibacillus sp (3.57%), uncultured (3.57%). All strains produce the proteolytic enzyme with diameters ranging of more than two cm. The phylogenetic inference using 16S rDNA analysis shows that these bacteria are very closed, excepted the Pseudomonas sp and uncultured bacteria, all belong to Bacillus cereus group, forming a coherent taxonomic group.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Diversity and Phylogenetic Relationships of Proteolytic Bacteria Isolated from Fermented Pepper and Soil in Brazzaville, Republic of Congo
    AU  - Isaac Onyankouang
    AU  - Cyr Jonas Morabandza
    AU  - Irène Marie Cécile Mboukou Kimbatsa
    AU  - Faly Armel Soloka Mabika
    AU  - Itsouhou Ngô
    AU  - Thantique Moutali Lingouangou
    AU  - Rachel Moyen
    AU  - Etienne Nguimbi
    Y1  - 2022/08/17
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ijmb.20220703.13
    DO  - 10.11648/j.ijmb.20220703.13
    T2  - International Journal of Microbiology and Biotechnology
    JF  - International Journal of Microbiology and Biotechnology
    JO  - International Journal of Microbiology and Biotechnology
    SP  - 124
    EP  - 134
    PB  - Science Publishing Group
    SN  - 2578-9686
    UR  - https://doi.org/10.11648/j.ijmb.20220703.13
    AB  - The diversity of bacteria was explored in two different environments in Brazzaville: soil and fermented peppers. The count showed that the total flora is greater in the fermented pepper (9.4. 104 CFU/g) than in the soil of 3.7. CFU/g, bacteria of the Bacillus genus are numerically more important in soil (9.3.104 CFU/g) than in fermented pepper (7.7.104 CFU/g). The morphotypes of all isolates presented small, medium and pink and whitish colored colonies, are catalases positive, protease producers, Gram positive, and spore forming, including one Gram negative isolate. 16S rDNA PCR of the isolates, Agarose Gel electrophoresis, sequencing and in silico analysis of the sequences were performed. The amplicons showed sizes closed to 1500bp, BLASTn analysis of the sequences made it possible to identify Twenty (20) strains, with a predominance Bacillus cereus sensu stricto strains (40%). Taking by environment, six (6) in the soil, namely Bacillus cereus sensu stricto (16.66%), Bacillus thuringiensis (16.66%), Bacillus anthracis (16.66%), Bacillus welmani (16.66%) and a Bacillus albus (16.66%), fourteen (14) strains in fermented peppers namely: Bacillus cereus sensu stricto (21.42%), Bacillus thuringiensis (7.14%), two Pseudomonas sp, Bacillus thuringiensis (3.57%), Bacillus sp (3.57%), Bacillus albus (1), Lysinibacillus sp (3.57%), uncultured (3.57%). All strains produce the proteolytic enzyme with diameters ranging of more than two cm. The phylogenetic inference using 16S rDNA analysis shows that these bacteria are very closed, excepted the Pseudomonas sp and uncultured bacteria, all belong to Bacillus cereus group, forming a coherent taxonomic group.
    VL  - 7
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Cellular and Molecular Biology Laboratory, Faculty of Science and Techniques, Marien Ngouabi University, Brazzaville, Congo

  • Sections