| Peer-Reviewed

Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders

Received: 27 February 2022    Accepted: 21 March 2022    Published: 31 March 2022
Views:       Downloads:
Abstract

The consumption of food supplements such as Spirulina and Moringa is increasing in developing countries. However, these foods, due to certain processing conditions, are likely to be contaminated by moulds potentially producing dangerous mycotoxins. The objective of this study is to determine the level of contamination and the diversity of fungal flora found in Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) powder produced and marketed in Abidjan. A total of 360 samples of powder, including 144 of Spirulina and 216 of Moringa, were collected from different sales outlets. The identification of fungal isolates was carried out on the basis of classical mycology criteria. The prevalence of fungal strains in the analyzed products was 85.83%, which 77.99% in Spirulina and 22.01% in Moringa. The predominant species were Aspergillus flavus (24.6%), Aspergillus niger (21.68%), Penicillium sp (20.71%), and Aspergillus fumigatus (12.62%). The study shows that Spirulina powder and Moringa powder sold in markets are contaminated with moulds, some of which are potentially mycotoxin producers posing a health risk to consumers. Strict hygiene measures must be observed during the production and marketing of Moringa and Spirulina powders in order to prevent any poisoning among consumers.

Published in International Journal of Microbiology and Biotechnology (Volume 7, Issue 1)
DOI 10.11648/j.ijmb.20220701.16
Page(s) 43-50
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Moringa Oleifera, Spirulina Platensis, Moulds, Mycotoxins

References
[1] Laurène, G., Claire, S. (2011). Législation du complément alimentaire et étude des compositions de deux types de compléments alimentaires. Thèse de Doctorat, Universite Joseph Fourier, 47p.
[2] Zineb, T. (2017). Les compléments alimentaire naturels. Thèse de Doctorat, Universite Mohammedv –Rabat, Maroc 35p.
[3] Thurber, M., D., & Fahey, J., W. (2009). Adoption of Moringa oleifera to combat undernutrition viewed through the lens of the “Diffusion of Innovations” theory. Ecology Food. Nutitionr, 48 (3): 212-225. Doi: 10.1080/03670240902794598.
[4] Cherif, A., Adam, S., Fidèle, P., Tchobo, M., Mohamed M. and Soumanou, M. M. (2015). Connaissance endogène et utilisations du Moringa oléifera pour les populations autochtones de huit départements du Bénin., International Journal of Biological and Chemical. Sciences Vol. 13 No. 2 Oct. 2015, pp. 316-326.
[5] Houndji, B., V., S., Romaric, O., Serge, B., M., L., Kou’Santa, S., E., Boniface, Y., & Cohovi, B., A. (2013). Caractérisations microbiologiques et physico-chimiques de la poudre de feuilles de Moringa oleifera (Lam.), un légume feuille traditionnel au Bénin, International Journal of Biological and Chemical. Sciences. 7 (1): 75-85.
[6] Audrey, M. (2016). La spiruline: indications thérapeutiques, risques sanitaires et conseils à l’officine. Sciences pharmaceutiques. Thèse de doctorat en Pharmacie, Université Grenoble Alpes, France, 17p.
[7] Falquet, J., & Urni, J., P. (2006). Spiruline aspect nutritionnels. Ed. Antenne Technologie, genèvre, Suisse. pp. 4-19.
[8] Cruchot, H. (2008). La Spiruline- Bilan et perspectives. Thèse doctorat Pharmacie, Université de Franche-Comté. 95p.
[9] Habib, M., A., B., Parvin, M., Huntington, T., C., & Hasan, M., R. (2008). A review on culture, production, and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. 1 (34). FAO, Roma, pp. 2–18.
[10] Saint Sauveur, A., & Broin, M. (2010). Produire et transformer les feuilles de moringa. 36 p. http://www.anancy.net/documents/file_fr/moringawebFR.pdf
[11] Hoekstra, D., T., H., Volschenk, M., Collins, & McMaster, L., D. (2011). "An investigation of Clostridium species present in nutraceutical preparations of Arthrospira platensis (Spirulina) for human consumption." Journal of Applied Phycology 23 (4): 777-787.
[12] Vardaka, E., Kormas, K., A., Katsiapi, M., Genitsaris, S., & Moustaka-Gouni, M. (2016). "Molecular diversity of bacteria in commercially available "Spirulina" food supplements." Peer J (1): 12p. doi: 10.7717/peerj.1610.
[13] Alimata, F., D., Konan, J., M.., K., Chantal, A., D., K., S., T., & Ardjouma, D. (2019). Exposition alimentaire aux mycotoxines cancérogènes dans le département de Séguéla (Nord-Ouest de la Cote d’Ivoire): cas de l’aflatoxine B1. International Journal of Biological and Chemical. Sciences 13 (2): 937-949.
[14] Gacem, M., A., Ould, E., H., K., A., & Gacemi, B. (2012). Étude de la qualité physicochimique et mycologique du blé tendre local et importé stocké au niveau de l’office algérien interprofessionnel des céréales (OAIC) de la localité de Saida (Algérie). Algerian Journal of Arid Environment. 1 (2). 67-76.
[15] Giraud, J. (2011). Microbiologie alimentaire. Edition Donod, Paris Mehravar M. & Sardari S;
[16] Botton, B., Breton, A., Fèvre, M., Gauthier, S., Guy, P., Larpent, J., P., Reymond, P., Sanglier, J. J., Vayssier Y., & Veau, P. (1999). Moisissures utiles et nuisibles, Importance industrielle, Edition Masson, Paris, 512p.
[17] Abdoullahi, H., O., Zongo, C., Tapsoba, F., Tidjani, A., & Savadogo, A. (2016). Evaluation de la qualité hygiénique et des paramètres physicochimiques des poissons séchés vendus dans les villes de N’djamena (Tchad) et de Ouagadougou (Burkina Faso). Revue de microbiologie industrielle, sanitaire, et environnementale. 10 (1): 13-32.
[18] Anses. (2017). AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux risques liés à la consommation de compléments alimentaires contenant de la spiruline. « Saisine n° 2014-SA-0096 » 39p.
[19] Aissi, A., K., Kougblenou, S., Dougnon, V., Klotoe, J., R., Bankole, H., Deguenon. Y., Degbey, C., Montcho, S., Fanou, B., Fah, L., Edorh, P., & Loko, F. (2013). Evaluation de la qualité sanitaire des poudres de feuilles de Moringa oleifera Lam. Commercialisées au profit des Personnes Vivant avec le VIH à Cotonou (Bénin). International Journal of Biological and Chemical. Sciences 7 (4): 1461–1473.
[20] Lugauskas, A., Raila, A., Railiene, M., & Raudoniene, V. (2006). Toxic micromycetes in grain raw material during its processing, Annals of agricultural and environmental medicine: AAEM 13 (1): 147-61.
[21] Dedi, née K., Y., J., Gbehe, S., & Youo, D., C. (2017). Caractérisation de neuf échantillons de farine de maïs Zea mays (L.) vendus sur les marchés d’Adjamé, Yopougon et Abobo en Côte d’Ivoire. Journal of Applied Biosciences. 11 (5): 11434-11440.
[22] Lahouar, A. (2016). Mycotoxines et champignons mycotoxinogènes dans les grains de sorgho commercialisé en Tunisie: Incidence et profils écophysiologiques. Thèse de doctorat 2016 Université de Lleida (Espagne) 225p.
[23] Siou, D. (2013). Développement épidémique de la fusariose des épis de blé et conséquences des interactions entre espèces du complexe fusarien. Sciences agricoles. Thèse de Doctorat de l’Université Paris Sud – Paris XI. 196p.
[24] Wagacha, J., M., & Muthomi, J., W. (2008). Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies, International Journal of Food Microbiology, Vol. 124, No. 1, 1-12.
[25] Tidjani, A., Agassounon, D., Tchibozo, M., Ameyapoh, Y., Toukourou, F& De Souza, C. (2007). Essais de conservation des viandes séchées «kilichi» commercialisées au Tchad: études de la stabilité microbiologique. Journal de la Recherche Scientifique de l’Université de Lomé. 2007; 9 (1): 9-17.
[26] Tidjani, A., Agassounon, D., Tchibozo, M., Ouattara, S., P., Toukourou, F. & De Souza, C. (2008). Dosage des aflatoxines dans les « kilichi » et leurs ingrédients commercialisés au Tchad, Microbiologie, Hygiène et Sécurité des Aliments. 20 (7): 27-34.
[27] Meri, K., Marika, J., & Aldo R. (2005). The effect of substrate on mycotoxin production of selected Penicillium strains. International Journal of Food Microbiology. 99: 207–214.
[28] Mehrez, A. (2008). Effets du radiotraitement par les rayonnements gamma sur la décontamination et la cytotoxicité d’une mycotoxine: l’Ochratoxine A. Université 7 novembre à Carthage Tunisie. Faculté des Sciences de Bizerte Département des Sciences de la vie. Master Sciences de L’Environnement 145p.
[29] Saint-Cyr, M. (2013). Impact des Mycotoxines sur le Microbiote Intestinal Humain, cas particulier du Déoxynivalénol Thèse / Université de Rennes 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de Docteur de L’Université de Rennes 1 Mention: Biologie et Sciences de la Santé. 196p.
Cite This Article
  • APA Style

    Yakoura Karidja Ouattara, Kalpy Julien Coulibaly, Sylvie Mireille Kouame-Sina, Zanakoungo Ibrahima Coulibaly, Amine Naty Tadiogo Kone, et al. (2022). Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders. International Journal of Microbiology and Biotechnology, 7(1), 43-50. https://doi.org/10.11648/j.ijmb.20220701.16

    Copy | Download

    ACS Style

    Yakoura Karidja Ouattara; Kalpy Julien Coulibaly; Sylvie Mireille Kouame-Sina; Zanakoungo Ibrahima Coulibaly; Amine Naty Tadiogo Kone, et al. Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders. Int. J. Microbiol. Biotechnol. 2022, 7(1), 43-50. doi: 10.11648/j.ijmb.20220701.16

    Copy | Download

    AMA Style

    Yakoura Karidja Ouattara, Kalpy Julien Coulibaly, Sylvie Mireille Kouame-Sina, Zanakoungo Ibrahima Coulibaly, Amine Naty Tadiogo Kone, et al. Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders. Int J Microbiol Biotechnol. 2022;7(1):43-50. doi: 10.11648/j.ijmb.20220701.16

    Copy | Download

  • @article{10.11648/j.ijmb.20220701.16,
      author = {Yakoura Karidja Ouattara and Kalpy Julien Coulibaly and Sylvie Mireille Kouame-Sina and Zanakoungo Ibrahima Coulibaly and Amine Naty Tadiogo Kone and Vakou N’dri Sabine and Karidja Thanon and Eugene Patrice Kissiedou and Andre Offianan Toure and Adjehi Dadie},
      title = {Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders},
      journal = {International Journal of Microbiology and Biotechnology},
      volume = {7},
      number = {1},
      pages = {43-50},
      doi = {10.11648/j.ijmb.20220701.16},
      url = {https://doi.org/10.11648/j.ijmb.20220701.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmb.20220701.16},
      abstract = {The consumption of food supplements such as Spirulina and Moringa is increasing in developing countries. However, these foods, due to certain processing conditions, are likely to be contaminated by moulds potentially producing dangerous mycotoxins. The objective of this study is to determine the level of contamination and the diversity of fungal flora found in Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) powder produced and marketed in Abidjan. A total of 360 samples of powder, including 144 of Spirulina and 216 of Moringa, were collected from different sales outlets. The identification of fungal isolates was carried out on the basis of classical mycology criteria. The prevalence of fungal strains in the analyzed products was 85.83%, which 77.99% in Spirulina and 22.01% in Moringa. The predominant species were Aspergillus flavus (24.6%), Aspergillus niger (21.68%), Penicillium sp (20.71%), and Aspergillus fumigatus (12.62%). The study shows that Spirulina powder and Moringa powder sold in markets are contaminated with moulds, some of which are potentially mycotoxin producers posing a health risk to consumers. Strict hygiene measures must be observed during the production and marketing of Moringa and Spirulina powders in order to prevent any poisoning among consumers.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Fungal Diversity of Food Supplements Sold on the Markets of Abidjan (Côte d'Ivoire): Case of Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) Powders
    AU  - Yakoura Karidja Ouattara
    AU  - Kalpy Julien Coulibaly
    AU  - Sylvie Mireille Kouame-Sina
    AU  - Zanakoungo Ibrahima Coulibaly
    AU  - Amine Naty Tadiogo Kone
    AU  - Vakou N’dri Sabine
    AU  - Karidja Thanon
    AU  - Eugene Patrice Kissiedou
    AU  - Andre Offianan Toure
    AU  - Adjehi Dadie
    Y1  - 2022/03/31
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ijmb.20220701.16
    DO  - 10.11648/j.ijmb.20220701.16
    T2  - International Journal of Microbiology and Biotechnology
    JF  - International Journal of Microbiology and Biotechnology
    JO  - International Journal of Microbiology and Biotechnology
    SP  - 43
    EP  - 50
    PB  - Science Publishing Group
    SN  - 2578-9686
    UR  - https://doi.org/10.11648/j.ijmb.20220701.16
    AB  - The consumption of food supplements such as Spirulina and Moringa is increasing in developing countries. However, these foods, due to certain processing conditions, are likely to be contaminated by moulds potentially producing dangerous mycotoxins. The objective of this study is to determine the level of contamination and the diversity of fungal flora found in Spirulina (Arthrospira platensis) and Moringa (Moringa oleifera) powder produced and marketed in Abidjan. A total of 360 samples of powder, including 144 of Spirulina and 216 of Moringa, were collected from different sales outlets. The identification of fungal isolates was carried out on the basis of classical mycology criteria. The prevalence of fungal strains in the analyzed products was 85.83%, which 77.99% in Spirulina and 22.01% in Moringa. The predominant species were Aspergillus flavus (24.6%), Aspergillus niger (21.68%), Penicillium sp (20.71%), and Aspergillus fumigatus (12.62%). The study shows that Spirulina powder and Moringa powder sold in markets are contaminated with moulds, some of which are potentially mycotoxin producers posing a health risk to consumers. Strict hygiene measures must be observed during the production and marketing of Moringa and Spirulina powders in order to prevent any poisoning among consumers.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Departement of Food Sciences and Technologies (STA), Laboratory of Microbiology and Biotechnology, Nangui Abrogoua University, Abidjan, C?te d’Ivoire

  • Environment and Health Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Platform of Molecular Biology, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Environment and Health Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Departement of Food Sciences and Technologies (STA), Laboratory of Microbiology and Biotechnology, Nangui Abrogoua University, Abidjan, C?te d’Ivoire

  • Environment and Health Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Mycology and Parasitology Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Environment and Health Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Mycology and Parasitology Department, Pasteur Institute of C?te d’Ivoire, Abidjan, C?te d’Ivoire

  • Departement of Food Sciences and Technologies (STA), Laboratory of Microbiology and Biotechnology, Nangui Abrogoua University, Abidjan, C?te d’Ivoire

  • Sections