| Peer-Reviewed

Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows

Received: 9 February 2023    Accepted: 22 March 2023    Published: 31 March 2023
Views:       Downloads:
Abstract

Colostrum volume after calving, transition and mature milk outputs in the time from 1st to 10th milkings were evaluated at 30 primiparous and 30 multiparous cows milked twice daily. Colostrum volume at the first milking after calving varied from 1.5 to 19.2 kg (mean 9.44 ±5.6 kg SD) in multiparous and from 1.2 to 9.8 kg (mean 5.65 ± 2.3 kg SD) in primiparous cows. Timing of the first milking did not negatively influence colostrum volume. Colostrum volume of the second milking decreased over all multiparous and primiparous cows because the period of time between first and second milking was shorter (10.5 hours). The hourly milk outputs increased sharply from the second to the fourth milking in multiparous and primiparous Holstein Friesian cows. Applying a linear regression model we observed a significant large positive relationship between volume of colostrum at first milking and subsequent transition and mature milk outputs from 2nd to 10th milkings. A low colostrum volume secreted was identified in multiparous cows, as a results of sorter dry period and in primiparous cows, probably as a result of low secretory capacity of mammary gland. Extended feeding with transition milk can be real health benefits for the newborn calf.

Published in Animal and Veterinary Sciences (Volume 11, Issue 2)
DOI 10.11648/j.avs.20231102.12
Page(s) 38-43
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Colostrum Volume, Transition Milk, Mature Milk, Time Between Milkings

References
[1] Baumrucker C. R., A. M. Burkett, A. L. Magliaro-Macrina, C. D. Dechow, 2010. Colostrogenesis: Mass transfer of immunoglobulin G1 into colostrum. J. Dairy Sci. 93 (7): 3031-3038. https://doi.org/10.3168/jds.2009-2963.
[2] Morrill K. M., E. Conrad, A. Lago, J. Campbell, J. Quigley, H. Tyler, 2012. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 95 (7): 3997-4005. https://doi.org/10.3168/jds.2011-5174.
[3] Baumrucker C. R., A. Stark, O. Wellnitz, C. Dechow, R. M. Bauckmaier, 2014. Short communication: Immunoglobulin variation in quarter-milked colostrum. J. Dairy Sci. 97 (6): 3700-3706. https://doi.org/10.31680/jds.2013-7107.
[4] Gross, J. J., E. C. Kessler, R. M. Bruckmaier, 2017. Quarter vs. composite colostrum composition assessed by Brix refractometry, specific gravity and visual color appearance in primiparous and multiparous dairy cows. Transl. Anim Sci. 1 (1): 26-35. https://doi.org/10.2527/tas2016.0001.
[5] Kessler E. C., G. C. Pistol, R. M. Bruckmaier, J. J. Gross, 2020a. Pattern of milk yield and immunoglobulin concentration and factors associated with colostrum quality at the quarter level of dairy cows after parturition. doi: 10.3168/jds.2019-17283.
[6] Gross J. J., G. Schüpbach-Regula, R. M. Bruckmaier, 2016. Rapid Communication: Colostrum immunoglobulin concentration in mammary quarters is repeatable in consecutive lactation of dairy cows. J. Anim. Sci. 94 (27136032): 1755-1760. https://doi.org//10.2527/jas.2016-0362.
[7] Rothschild M. F., G. W. Bodoh, R. E. Pearson, R. H. Miller, 1980. Sources of variation in quarter milk flow measures 1, 2. J. Dairy Sci. 63 (7): 1138-1144. https://doi.org/10.3168/jds.S0022-0302(80)83059-1.
[8] Rothenanger E., E. M. Bruckmaier, J. W. Blum, 1995. Association and dissociation of single quarter and total milk flow in dairy cows: Effects of milking with and without pre-stimulation. Milchwissenschaft, Germany. 50: 63-67. https://agris.fao.org/agris-search/search.do?recordID=DE9580059
[9] Pritchett L. C., C. C. Gay, T. E. Besser, D. D. Hancock, 1991. Management and Production Factors influencing immunoglobulin G1 Concentration in colostrum from Holstein cows. J. Dairy Sci. 74: 2336-2341. DOI: 10.3168/jds.S0022-0302(91)78406-3.
[10] Guy M. A., T. B. McFadden, D. C. Cockrell, T. E. Besser, 1994. Regulation of colostrum formation in beef and dairy cows. J. Dairy Sci. 77: 3002-3007. doi: 10.3168/jds.S0022-0302(94)77241-6.
[11] Larson B. L., H. L. Heary Jr., J. E. Devery, 1980. Immunoglobulin production and transport by the mammary gland. J. Dairy Sci. 63: 665-671. doi: 10.3168/jds.S0022-0302(80)82988-2.
[12] Conneely M., D. P. Berry, R. Sayers, J. P. Murphy, I. Lorenz, M. L. Doherty, E. Kennedy, 2013. Factors associated with the concentration of immunoglobulin G in the colostrum dairy cows. Animal 7 (11): 1824-1832. https://doi.org/10.107/S1751731113001444.
[13] Hammon H. M., J. Steinhoff–Wagner, J. Flor, U. Schönhusen, C. C. Meteges, 2013. Lactation Biology Symposium: Role of colostrum and colostrum components on glucose metabolism in neonatal calves 1. J. Anim. Sci. 91: 685-695. https://doi.org/10.2527/jas.2012-5758.
[14] Contarini G., M. Povolo, V. Pelizzola, L. Monti, A. Bruni, L. Passolungo, F. Abeni, L. Degano, 2014. Bovine colostrum: changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 97: 5065-5072. doi: 10.3168/jds.2013-7517.
[15] T. F. O’Callaghan, M. O’Donovan, J. P. Murphy, K. Sugrue, D. Mannion, W. P. McCarthy, M. Timlin, K. N. Kilcawley, R. M. Hickey, J. T. Tobin, 2020. Evolution of the bovine milk fatty acid profile – From colostrum to milk five days post parturition. Int. Dairy J. 104: 8721-8731. https://doi.org/10.1016/j.idairyj.2020.104655.
[16] Gooden S. M., J. E. Lombard, A. R. Woolums, 2019. Colostrum management for Dairy Calves. Vet. Clin. N. Am Food Anim. Proct. 35: 535-556. doi: 10.1016/j.cvfa.2019.07.005.
[17] Soufleri A., G. Banos, N. Panousis, D. Fletouris, G. Arsenos, A. Kougioumtzis, G. E. Valergakis, 2021. Evaluation of Factors Affecting Colostrum Quality and Quantity in Holstein Dairy Cattle. Animals 11: 2005. Doi: doi: 10.3390/ani11072005.
[18] Gavin K, H. Neibergs, A. Hoffman, J. N. Kiser, M. A. Cornmesser, S. Amirpour Haredasht, B. Martinez-Lopez, J. R. Wenz, D. A. Moore, 2018. Low colostrum yield in Jersey cattle and potential risk factors. J. Dairy Sci. 101: 6388-6398. https://doi.org/10.3168/jds.2017-14308.
[19] Dunn A., A. Ashfield, B. Earley, M. Welsh, A. Gordon, S. J. Morrison, 2017. Evaluation of factors associated with immunoglobulin G, fat, protein and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J. Doi. Sci. 100: 2068-2079. https://doi.org/10.3168/jds.2016-11724.
[20] Soufleri A., G. Banos, N. Panousis, D. Fletouris, G. Arsenos, G. E. Valergakis, 2019. Genetic parameters of colostrum traits in Holstein dairy cows. J. Dairy Sci. 102: 11225-11232. Doi: https://doi.org/10.3168/jds.2019-17054.
[21] P. Martin, A. Vinet, C. Denis, C. Grohs, L. Chanteloup, D. Dozias, D. Maupetit, J. Sapa, G. Renand, F. Blanc, 2021. Determination of immunoglobulin concentrations and genetic parameters for colostrum and calf serum in Charolais animals. J. Dairy Sci. 104: 3240-3249. doi: 10.3168/jds.2020-19423.
[22] Cordero-Solarzano J., Dirk-Jan de Koning, Madeleine Travén, Thereses de Haan, Mathilde Jouffroy, Andrea Larsson, Aline Myrthe, Joop A. J. Arts, H. K. Parmentier, H. Bovenhuis, J. J. Wensman, 2022. Genetic parameters of colostrum and calf serum antibodies in Swedish dairy cattle. Genetics Selection Evolution 54, 68 (2022). DOI: 10.1186/s12711-022-00758-y.
[23] Potts Sarah, 2022. Transition milk may benefit dairy calves. https://extension.umd.edu/rsource/transition-milk-may-benefit-dairycalves.
[24] Le A., L. D. Barton, J. T. Sanders, Q. A. Zhang, 2011. Exploration of bovine milk proteome in colostral and mature whey using an ion – exchange approach. J. Proteome Res. 10: 692-704. doi: 10.1021/pr100884z.
[25] Zhang L., S. Boeren, J. A. Hageman, T. van Hooijdonk, J. Vervoort, K. Hettinga, 2015. Bovine milk proteome in the first 9 days: Protein interactions in maturation of the immune and digestive system of the newborn. PLOS ONE, 10: (2015), p, e0116710. https://doi.org/10.1371/journal.pone.0116710.
[26] Fahey M. J., A. J. Fischer, M. A. Steele, S. L. Greenwood, 2020. Characterization of the colostrum and transition milk proteomes from primiparous and multiparous Holstein dairy cows. J. Dairy Sci. 103: 1993-2005. doi: 10.3168/jds.2019-17094.
[27] Hansen J. V., N. C. Friggens, S. Højsgaard, 2006. The influences of breed and parity on milk yield and, milk yield acceleration curves. Livest. Sci. 104: 53-62. https://doi.org/10.1016/j.livsci.2006.03.007.
[28] J. Lombard, N. Urie, F. Garry, S. Godden, J. Quigley, T. Earleywine, S. McGuirk, D. Moore, M. Branan, M. Chamorro, G. Smith, C. Shivley, D. Catherman, D. Haines, A. J. Heinrichs, R. James, J. Maas, K. Sterner, 2020. Consensus recommendations on calf – and herd – level passive immunity in dairy calves in the United States. J. Dairy Sci. 103: 7611-7624. doi: 10.3168/jds.2019-17955.
[29] Morin D. E., S. V. Nelson, E. D. Reid, D. W. Nagy, G. E. Dahl, P. D. Constable, 2010. Effect of colostrum volume, interval between calving and first milking and photoperiod on colostral IgG concentrations in dairy cows. J. Anm. Vet. Med. Assoc. 237 (4): 420-428. https://doi.org/10.2460/javma.237.4.420.
[30] Kessler E. C., R. M. Bruckmaier, J. J. Gross, 2014. Milk production during the colostral period is not related to the later lactational performance in dairy cows. Journal of Dairy Science 97: 2186-2192. https://doi.org/10.3168/jds.2013-7573.
[31] Cabral R. G., C. E. Chapman, K. M. Aragona, E. Clark, M. Lunak, P. S. Erickson, 2016. Predicting colostrum quality from performance in the previous lactation and environmental changes. J. Dairy Sci. 99 (5): 4048-4055. https://doi.org/10.3168/jds.2015-9868.
[32] Devery-Pocius J. E., B. L. Larson, 1983. Age and previous lactations as factors in the amount of bovine colostral immunoglobulins. J. Dairy Sci. 66 (2): 221-226. https://doi.org/10.3168/jds.S0022-0302(83)81780-9.
[33] Madsen B. D., M. D. Rasmussen, M. O. Nielsen, L. Wiking, L. B. Larsen, 2004. Physical properties mammary secretions in relation to chemical changes during transition from colostrum to milk. J. Dairy Res. 71 (3): 263-272. https://doi.org/10.1017/s0022029904000263.
[34] McFadden T. B., R. M. Akers, G. W. Kazmer, 1987. Alpha-lactalbumin in bovine serum: Relationships with udder development and function. Journal of Dairy Sci. 70 (2): 259-264. https://doi.org/10.3168/jds.S0022-0302(87)8005-X.
[35] Nickerson S. C., R. M. Akers, 1984. Biochemical and ultrastructural aspects of milk synthesis and secretion. Int. J. Biochem. 16 (8): 855-865. https://doi.org/10.1016/0020-711X(84)90144-7.
[36] Annen E. L., A. C. Fitzgerald, P. C. Gentry, M. A. McGuire, A. V. Capuco, L. H. Baumgard, R. J. Collier, 2007. Effect of continuous milking and bovine somatotropin supplementation on mammary epithelial cell turnover. J. Dairy Sci. 90 (1): 165-183. https://doi.org/10.3168/jds.S0022-0302(07)72618-8.
[37] Kessler E. C., R. M. Bruckmaier and J. J. Gross, 2020b. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J. Anim. Sci. 98 (8): skaa237. Doi: 10.1093/jas/skaa237.
Cite This Article
  • APA Style

    Găvan Constantin, Riza Mihaela. (2023). Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows. Animal and Veterinary Sciences, 11(2), 38-43. https://doi.org/10.11648/j.avs.20231102.12

    Copy | Download

    ACS Style

    Găvan Constantin; Riza Mihaela. Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows. Anim. Vet. Sci. 2023, 11(2), 38-43. doi: 10.11648/j.avs.20231102.12

    Copy | Download

    AMA Style

    Găvan Constantin, Riza Mihaela. Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows. Anim Vet Sci. 2023;11(2):38-43. doi: 10.11648/j.avs.20231102.12

    Copy | Download

  • @article{10.11648/j.avs.20231102.12,
      author = {Găvan Constantin and Riza Mihaela},
      title = {Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows},
      journal = {Animal and Veterinary Sciences},
      volume = {11},
      number = {2},
      pages = {38-43},
      doi = {10.11648/j.avs.20231102.12},
      url = {https://doi.org/10.11648/j.avs.20231102.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.avs.20231102.12},
      abstract = {Colostrum volume after calving, transition and mature milk outputs in the time from 1st to 10th milkings were evaluated at 30 primiparous and 30 multiparous cows milked twice daily. Colostrum volume at the first milking after calving varied from 1.5 to 19.2 kg (mean 9.44 ±5.6 kg SD) in multiparous and from 1.2 to 9.8 kg (mean 5.65 ± 2.3 kg SD) in primiparous cows. Timing of the first milking did not negatively influence colostrum volume. Colostrum volume of the second milking decreased over all multiparous and primiparous cows because the period of time between first and second milking was shorter (10.5 hours). The hourly milk outputs increased sharply from the second to the fourth milking in multiparous and primiparous Holstein Friesian cows. Applying a linear regression model we observed a significant large positive relationship between volume of colostrum at first milking and subsequent transition and mature milk outputs from 2nd to 10th milkings. A low colostrum volume secreted was identified in multiparous cows, as a results of sorter dry period and in primiparous cows, probably as a result of low secretory capacity of mammary gland. Extended feeding with transition milk can be real health benefits for the newborn calf.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Secreted Colostrum Volume, Transition and Mature Milk Outputs After Calving in Holstein Friesian Cows
    AU  - Găvan Constantin
    AU  - Riza Mihaela
    Y1  - 2023/03/31
    PY  - 2023
    N1  - https://doi.org/10.11648/j.avs.20231102.12
    DO  - 10.11648/j.avs.20231102.12
    T2  - Animal and Veterinary Sciences
    JF  - Animal and Veterinary Sciences
    JO  - Animal and Veterinary Sciences
    SP  - 38
    EP  - 43
    PB  - Science Publishing Group
    SN  - 2328-5850
    UR  - https://doi.org/10.11648/j.avs.20231102.12
    AB  - Colostrum volume after calving, transition and mature milk outputs in the time from 1st to 10th milkings were evaluated at 30 primiparous and 30 multiparous cows milked twice daily. Colostrum volume at the first milking after calving varied from 1.5 to 19.2 kg (mean 9.44 ±5.6 kg SD) in multiparous and from 1.2 to 9.8 kg (mean 5.65 ± 2.3 kg SD) in primiparous cows. Timing of the first milking did not negatively influence colostrum volume. Colostrum volume of the second milking decreased over all multiparous and primiparous cows because the period of time between first and second milking was shorter (10.5 hours). The hourly milk outputs increased sharply from the second to the fourth milking in multiparous and primiparous Holstein Friesian cows. Applying a linear regression model we observed a significant large positive relationship between volume of colostrum at first milking and subsequent transition and mature milk outputs from 2nd to 10th milkings. A low colostrum volume secreted was identified in multiparous cows, as a results of sorter dry period and in primiparous cows, probably as a result of low secretory capacity of mammary gland. Extended feeding with transition milk can be real health benefits for the newborn calf.
    VL  - 11
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Research Department, Agriculture Research and Development Station &Scedil

  • Sections