| Peer-Reviewed

Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa)

Received: 12 September 2022    Accepted: 5 October 2022    Published: 24 October 2022
Views:       Downloads:
Abstract

The study aims at evaluating the potential of carbon sequestration by woody vegetation in the township of Natitingou. The phytosociological survey method was used to collect data in plots 344 of 1 ha each using the stratified random sampling technique. The use of the allometric model, developed for the Sudanian domain, made it possible to estimate the carbon of the different species inventoried. In total, 89 woody species, divided into 74 genera and 36 families were counted. The most representative families are Leguminosae-Caesalpinioideae (15%), Moraceae (9%), Anacardiaceae (7%), Leguminosae-Mimosoideae (7%). The urban woody vegetation of Natitingou produces on average 42.3 ± 4.1 tMs/ha of biomass for an average carbon stock rate of 20.6 ± 2.0 t/ha, of which the equivalent in trapped CO2 is 75.5 ± 7.4 t/ha. Afzelia africana (7.8 t/tree) and Adansonia digitata (6.9 t/tree) have the highest average carbon values by species, while Annona senegalensis (0.008 t/tree) and Senna alata (0.006 t/tree) have the lowest values. The ecological value of vegetation in the urban environment of Natitingou is estimated at 803901 $. The atmospheric carbon reduction potential of urban vegetation in Natitingou was revealed and will serve decision makers and the public as a springboard for urban planning projects and as an opportunity for the carbon market in the REDD+ process.

Published in American Journal of Environmental Protection (Volume 11, Issue 5)
DOI 10.11648/j.ajep.20221105.13
Page(s) 131-142
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Urban Woody Vegetation, Biomass, Carbon Stock, Carbon Dioxide Emission, Natitingou

References
[1] DE Munck, C. (2013). Modélisation de la végétation urbaine et stratégies d'adaptation pour l'amélioration du confort climatique et de la demande énergétique en ville [Urban vegetation modeling and adaptation strategies for improving climate comfort and energy demand in cities]. Thèse de doctorat, Universite de Toulouse, Ocean, Atmosphère et surfaces continentales, 119 p.
[2] Seto, K. C. (2013). Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Global Environmental Change, vol. 21S, p. S94-S107.
[3] Agbanou, B. T. (2018). Dynamique de l’occupation du sol dans le secteur Natitingou-Boukombé (nord-ouest bénin): de l’analyse diachronique à une modélisation prospective [Land use dynamics in the Natitingou-Boukombe area (northwestern Benin): from diachronic analysis to prospective modeling]. Géographie. Université Toulouse le Mirail-Toulouse II; Université nationale du Bénin, 271 p.
[4] Chen, X., YE, C., Li, J. and Michael, A. & Chapman, M. A. (2018). Quantifying the Carbon Storage in Urban Trees Using Multispectral ALS Data. IEEE journal of selected topics in applied earth observations and remote sensing. 1939-1404. at http://ieeexplore.ieee.org.
[5] Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening, 3 (2), 65-78.
[6] Noukpo, A. (2008). « Les villes du Bénin méridional: entre nature et culture ? » [The cities of southern Benin: between nature and culture?], Géographie et cultures. URL: http://gc.revues.org/2384; DOI: 10.4000/gc.2384, 14 p.
[7] Meteo-Benin, 2021. Données climatiques de 1990 à 2020 des stations météorologiques de Kandi et de Natitingou, Bénin [Climate data from 1990 to 2020 from the meteorological stations of Kandi and Natitingou, Benin].
[8] Ozenda, P. (1982). Les végétaux dans la biosphère [Plants in the biosphere]. Doin, Paris, France, 431 p.
[9] Nowak, D. J., Hoehn, R. E, Crane, D. E., Stevens, J. C., Walton, J. T., & Bond, J., (2008). A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture and Urban Forestry., 34 (6), 347-358. URL: http://www.nrs.fs.fed.us/pubs/jrnl.
[10] Nero, BF, Callo-Concha, D, & Denich, M. (2018). Structure, Diversity, and Carbon Stocks of the Tree, Community of Kumasi, Ghana; Forests, Germany 9 (519): 17. DOI: http://dx.doi.org/10.3390/f9090519
[11] Tuo, F. N., Kouao Jean Koffi, K. J., Kouassi, A. F., Kone, M., Adama, B., & Bogaert, J. (2017). Etude de la diversité, de l’endémisme et de la distribution spatiale des Rubiaceae de Côte d’Ivoire [Study of the diversity, endemism and spatial distribution of Rubiaceae of Ivory Coast]. Int. J. Biol. Chem. Sci., 11 (2): 777-797. DOI: https://dx.doi.org/10.4314/ijbcs.v11i2.20
[12] Kim, G., Miller, P. A., Nowak, D. J. (2015). Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban Forestry & Urban Greening, 8 (679): 519-526. DOI: http://dx.doi.org/10.1016/j.ufug.2015.05.003
[13] Chabi, A., Lautenbach, S., Orekan, V. O. A., & Kyei-Baffour, N. (2016). Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin. Carbon Balance Manage, 11 (16): 18 p. DOI: http://dx.doi.org/10.1186/s13021-016-0058-5
[14] Orou wari, B., Zakari, S., djaouga, M., Toko, I. I., Yabi, I, Tente, B. A. H., & Djego, G. J. (2021). Diversité et structure de la végétation ligneuse dans la ville de Malanville au Nord-Bénin [Diversity and structure of woody vegetation in the city of Malanville in northern Benin]. Int. J. Biol. Chem. Sci. 15 (1): 129-143. https://dx.doi.org/10.4314/ijbcs.v15i1.12
[15] Dagnelie, P. (1998). Statistique théorique et appliquée [Theoretical and applied statistics]. (Vol 2). De Boeck & Larcier, Paris.
[16] Moussa, S., Kyereh, B, Kuyah, S., Tougiani, B, & Saadou, M. (2019). Composition floristique et structure des forêts urbaines des villes sahéliennes: Cas de Niamey et Maradi, Niger [Floristic composition and structure of urban forests in Sahelian cities: the case of Niamey and Maradi, Niger]. Science de la vie, de la terre et agronomie, 07 (00), 2424-7235.
[17] Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. United States Government Printing Office. Geological Survey Professional Washington D. C. 961. 41.
[18] Akoegninou, A, Van der Burg, WJ, & Van der Maesen, L. J. G. (2006). Flore analytique du Bénin [Analytical flora of Benin]. Backhuys Publishers, Wageningen, p. 1034.
[19] Arbonnier, M. (1990). Arbres et arbustes du Sahel. Leurs caractéristiques et leurs utilisations [Trees and shrubs of the Sahel. Their characteristics and their uses] Verlag Josef Margraf, Paris.
[20] IPCC (2019). The Special Report on Global Warming of 1.5°C was released in October 2018. The Methodology Report 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories was adopted and accepted in May 2019.
[21] Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, h., Riéra, B. & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, pp 87-99.
[22] Ploton, P. et al. (2016). Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 13 (5), 1571-1585.
[23] Molto, Q., Rossi, V. & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods Ecol. Evol., 4 (2), 175-183.
[24] Picard, N., Boyemba Bosela, F. & Rossi, V. (2015). Reducing the error in biomass estimates strongly depends on model selection. Ann. For. Sci., 72 (6), 811-823.
[25] Mbow, C., Verstraete, M. M., Sambou, B., Diaw, A. T., & Neufeldt, H. (2014). Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan-Guinean ecosystems of Southern Senegal. J For Res, 19: 340 – 347, doi: 10.1007/s10310-013-0414-1.
[26] Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: McPherson, E., G., Nowak, D. J., & Rowntree, R (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project. General technical report NE-186, U. S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor.
[27] Aguaron, E. & McPherson, E. G. (2012). Comparison of Methods for Estimating Carbon Dioxide Storage by Sacramento’s Urban Forest. Urban Ecosystems and Social Dynamics Program, USDA Forest Service, 1731 Research Park Dr, Davis, CA 95618, USA 29 pp.
[28] Tsoumou, B. R., Lumande, K. J. & Nzila, J. D. (2016). Estimation de la quantité de Carbone séquestré par la Foret Modèle de Dimonika (Sud-ouest de la République du Congo) [Estimation of the quantity of carbon sequestered by the Dimonika Model Forest (South-West of the Republic of Congo)]. Volume 6. Pp: 39-45.
[29] Guendehou, G. H. S., Lehtonen, A., Moudachirou, M., Mäkipää, R., & Sinsin, B. (2012). Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests, 74 (2): 77 – 88, doi: 10.2989/20702620.2012.701432.
[30] Glenn, H. (2008). Aperçu général au MDP et le marché Carbone [Overview of the CDM and the Carbon Market], Programme UNEP, RISOE, Projet CD4CDM, Atelier sectoriel énergie, Alger, 21 p.
[31] Anobla, A., O., M. & N’Dja J., K. (2016). Dynamique de la végétation de Bamo et stocks de carbone dans la mosaïque de végétation [Bamo vegetation dynamics and carbon stocks in the vegetation mosaic] European Scientific Journal édition 12 (18) ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431.
[32] Mcghee, W., Saigle, W., Padonou, E. A., & Lykke, A. M. (2016). Méthodes de calcul de la biomasse et du carbone des arbres en Afrique de l’ouest [Methods for calculating tree biomass and carbon in West Africa]. Annales des Sciences Agronomiques 20 - spécial Projet Undesert-UE: 79-98.
[33] FAO (2016). Guidelines on urban and peri-urban forestry (No. 178), FAO Forestry Paper. FAO, Rome, Italia.
[34] Amani, A. C., Milenge, K. H., Lisingo, J. & Nshimba, H. (2013). Analyse floristique et impact du déterminisme édaphique sur l’organisation de la végétation dans les forêts de l’ile Kongolo (R. D. Congo) [Floristic analysis and impact of edaphic determinism on the organization of the vegetation in the forests of Kongolo Island (R. D. Congo)]. Geo-Eco-Trop. 37 (2): 255-272.
[35] N'Zala, D., & Miankodila, P. (2002). Arbres et espaces verts à Brazzaville (Congo) [Trees and green spaces in Brazzaville (Congo)]. Bois et forêts des tropiques (272), 88-92.
[36] Gomgnimbou, P. K. A., Ouedraogo, O. W., Abdramane Sanon, A., Madjelia Kone, M., Ilboudo, D., & NACRO, B. H., (2019). Potentiel de séquestration du carbone par les espaces verts aménagés urbains de la ville de Bobo-Dioulasso au Burkina Faso [Carbon sequestration potential of urban green spaces in the city of Bobo-Dioulasso in Burkina Faso]. Journal of Applied Biosciences 144: 14739 – 14746 https://doi.org/10.35759/JABs.v144.1
[37] FAO (2012). Etude sur la foresterie urbaine et périurbaine de N’Djaména, Tchad. Rôle et place de l’arbre en milieu urbain et périurbain. Document de travail sur la foresterie urbaine et périurbaine [Study on urban and peri-urban forestry in N'Djaména, Chad. Role and place of trees in urban and peri-urban areas. Working paper on urban and peri-urban forestry]. (Vol 6). Anne-Gaëlle Abhervé-Quinquis, Rome.
[38] Murtala, M., Abd Manaf, L., Ramli, F. M., Yacob, R. M. & Makmom, A. A. (2019). Quantifying the Aboveground Biomass and Carbon Storage of Urban Tree Species in Sokoto Metropolis, North-Western Nigeria. PLANNING MALAYSIA: Journal of the Malaysian Institute of Planners VOLUME 17 ISSUE 2 (2019), Page 179 – 190 DOI: 10.21837/pmjournal.v17.i10.639.
[39] Tak, A. and Kakde, U. B. (2020). Analysis of carbon sequestration by dominant trees in urban areas of Thane city. International Journal of Global Warming Int. J. Global Warming, Vol. 20, No. 1. DOI: 10.1504/IJGW.2020.104615.
[40] Lahoti, S., Lahoti, A., Joshi, K. R. & Saito, O. (2020). Vegetation Structure, Species Composition, and Carbon Sink Potential of Urban Green Spaces in Nagpur City, India. 9, 107 http://dx.doi.org/10.3390/land9040107
[41] Sjöman, H., Morgenroth, J., Sjöman, J. D., Sæbø, A., & Kowarik, I. (2016). Diversification of the urban forest—Can we afford to exclude exotic tree species? Urban For. Urban Green. 18, 237–241. https://doi.org/10.1016/j.ufug.2016.06.011
[42] Kühn I., Brandl R., Klotz S., (2004). The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764. https://doi.org/10.1109/JSEN.2009.2035730
[43] Escobedo, F. J., Clerici, N., Staudhammer, C. L., & Corzo, G. T. (2015). Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban For. Urban Green. 14, 1040–1053. DOI: https://doi.org/10.1016/j.ufug.2015.09.011
[44] Nero, B. F., (2017). Urban Green Spaces Enhance Carbon Sequestration and Conserve Biodiversity in Cities of the Global South: Case of Kumasi Ghana. Thèse de doctorat, University of Bonn: Bonn, Germany, p. 158.
[45] Charahabil, M. M., Cesar, B., Hamadou, B., Ndiaye, S., & Diatta, M., (2018). Diversité et structure des espaces végétalisés urbains de la ville de Ziguinchor, Sénégal [Diversity and structure of urban vegetated areas in the city of Ziguinchor, Senegal]. Int. J. Biol. Chem. Sci., 12 (4): 1650-1666. DOI: https://dx.doi.org/10.4314/ijbcs.v12i4.12
[46] Polorigni B., Raoufo R., Kouami K., 2014. Perceptions, tendances et préférences en foresterie urbaine: cas de la ville de Lomé au Togo [Perceptions, trends and preferences in urban forestry: the case of the city of Lome in Togo]. European Scientific Journal., 10 (5): 261-277. DOI: http://dx.doi.org/10.19044/ESJ.2014.V10N5P%P
[47] Folega, F., Kanda, M., Konate, D., Pereki, H., Wala, K., Atakpama, W., Akuete, A. F., & Akpagana, K. (2017). Foresterie urbaine et potentiel de séquestration du carbone atmosphérique dans la zone urbaine et péri-urbaine de Kpalimé (TOGO) [Urban forestry and atmospheric carbon sequestration potential in the urban and peri-urban area of Kpalime (TOGO)]. Rev. Sc. Env. Univ., Lomé (Togo), 14 (1) ISSN 1812-1403 https://www.researchgate.net/publication/321824844
[48] Simza, D. (2012). Foresterie urbaine et sa contribution dans la séquestration du carbone: cas de la ville de Lomé (Togo) [Urban forestry and its contribution to carbon sequestration: the case of the city of Lome (Togo)]. Mémoire de DEA, Universite de Lomé Togo.
[49] Liu, C., & Li, X., (2012). Carbon storage and sequestration by urban forests in Shenyang, China Urban Forestry & Urban Greening 11 121–128.
Cite This Article
  • APA Style

    Bake Orou Wari, Soufouyane Zakari, Mama Djaouga, Waris Kewouyemi Chouti, David Baloubi, et al. (2022). Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa). American Journal of Environmental Protection, 11(5), 131-142. https://doi.org/10.11648/j.ajep.20221105.13

    Copy | Download

    ACS Style

    Bake Orou Wari; Soufouyane Zakari; Mama Djaouga; Waris Kewouyemi Chouti; David Baloubi, et al. Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa). Am. J. Environ. Prot. 2022, 11(5), 131-142. doi: 10.11648/j.ajep.20221105.13

    Copy | Download

    AMA Style

    Bake Orou Wari, Soufouyane Zakari, Mama Djaouga, Waris Kewouyemi Chouti, David Baloubi, et al. Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa). Am J Environ Prot. 2022;11(5):131-142. doi: 10.11648/j.ajep.20221105.13

    Copy | Download

  • @article{10.11648/j.ajep.20221105.13,
      author = {Bake Orou Wari and Soufouyane Zakari and Mama Djaouga and Waris Kewouyemi Chouti and David Baloubi and Ibouraima Yabi and Brice Tente and Ismaila Toko Imorou},
      title = {Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa)},
      journal = {American Journal of Environmental Protection},
      volume = {11},
      number = {5},
      pages = {131-142},
      doi = {10.11648/j.ajep.20221105.13},
      url = {https://doi.org/10.11648/j.ajep.20221105.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajep.20221105.13},
      abstract = {The study aims at evaluating the potential of carbon sequestration by woody vegetation in the township of Natitingou. The phytosociological survey method was used to collect data in plots 344 of 1 ha each using the stratified random sampling technique. The use of the allometric model, developed for the Sudanian domain, made it possible to estimate the carbon of the different species inventoried. In total, 89 woody species, divided into 74 genera and 36 families were counted. The most representative families are Leguminosae-Caesalpinioideae (15%), Moraceae (9%), Anacardiaceae (7%), Leguminosae-Mimosoideae (7%). The urban woody vegetation of Natitingou produces on average 42.3 ± 4.1 tMs/ha of biomass for an average carbon stock rate of 20.6 ± 2.0 t/ha, of which the equivalent in trapped CO2 is 75.5 ± 7.4 t/ha. Afzelia africana (7.8 t/tree) and Adansonia digitata (6.9 t/tree) have the highest average carbon values by species, while Annona senegalensis (0.008 t/tree) and Senna alata (0.006 t/tree) have the lowest values. The ecological value of vegetation in the urban environment of Natitingou is estimated at 803901 $. The atmospheric carbon reduction potential of urban vegetation in Natitingou was revealed and will serve decision makers and the public as a springboard for urban planning projects and as an opportunity for the carbon market in the REDD+ process.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Assessment of Carbon Stock in Woody Vegetation for the Mitigation of Atmospheric CO2 Emissions at Natitingou City in North Benin (West Africa)
    AU  - Bake Orou Wari
    AU  - Soufouyane Zakari
    AU  - Mama Djaouga
    AU  - Waris Kewouyemi Chouti
    AU  - David Baloubi
    AU  - Ibouraima Yabi
    AU  - Brice Tente
    AU  - Ismaila Toko Imorou
    Y1  - 2022/10/24
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ajep.20221105.13
    DO  - 10.11648/j.ajep.20221105.13
    T2  - American Journal of Environmental Protection
    JF  - American Journal of Environmental Protection
    JO  - American Journal of Environmental Protection
    SP  - 131
    EP  - 142
    PB  - Science Publishing Group
    SN  - 2328-5699
    UR  - https://doi.org/10.11648/j.ajep.20221105.13
    AB  - The study aims at evaluating the potential of carbon sequestration by woody vegetation in the township of Natitingou. The phytosociological survey method was used to collect data in plots 344 of 1 ha each using the stratified random sampling technique. The use of the allometric model, developed for the Sudanian domain, made it possible to estimate the carbon of the different species inventoried. In total, 89 woody species, divided into 74 genera and 36 families were counted. The most representative families are Leguminosae-Caesalpinioideae (15%), Moraceae (9%), Anacardiaceae (7%), Leguminosae-Mimosoideae (7%). The urban woody vegetation of Natitingou produces on average 42.3 ± 4.1 tMs/ha of biomass for an average carbon stock rate of 20.6 ± 2.0 t/ha, of which the equivalent in trapped CO2 is 75.5 ± 7.4 t/ha. Afzelia africana (7.8 t/tree) and Adansonia digitata (6.9 t/tree) have the highest average carbon values by species, while Annona senegalensis (0.008 t/tree) and Senna alata (0.006 t/tree) have the lowest values. The ecological value of vegetation in the urban environment of Natitingou is estimated at 803901 $. The atmospheric carbon reduction potential of urban vegetation in Natitingou was revealed and will serve decision makers and the public as a springboard for urban planning projects and as an opportunity for the carbon market in the REDD+ process.
    VL  - 11
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Cartography, Remote Sensing and GIS (LaCarto), University of Abomey-Calavi, Cotonou Houéyiho, Benin

  • Laboratory of Cartography, Remote Sensing and GIS (LaCarto), University of Abomey-Calavi, Cotonou Houéyiho, Benin

  • Laboratory of Cartography, Remote Sensing and GIS (LaCarto), University of Abomey-Calavi, Cotonou Houéyiho, Benin

  • Laboratory of Inorganic Chemistry and Environment (LACIE), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory for the Study of Urban and Regional Dynamics (LEDUR), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Pierre Pagney Laboratory, "Climate, Water, Ecosystems and Development" (LACEEDE), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Biogeography and Environmental Expertise (LABEE), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Cartography, Remote Sensing and GIS (LaCarto), University of Abomey-Calavi, Cotonou Houéyiho, Benin

  • Sections