| Peer-Reviewed

Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index

Received: 9 February 2023    Accepted: 3 March 2023    Published: 27 April 2023
Views:       Downloads:
Abstract

The objective of this study is to improve the preparation of a biosorbent from the cocoa pod shell by an experimental plan. The shells underwent drying and grinding followed by chemical impregnation with sodium hypochlorite. The process was optimized based on the analysis of the methylene blue index as a function of four factors: the drying temperature, the mass of the material, the mass of the hypochlorite and the agitation temperature of the preparation. This analysis based on the experimental plan reveals that under the preparation conditions the methylene blue index varies from 201.24 to 402.61 mg/g. Statistical analysis of the data shows that the size of the biosorbent is the factor that strongly influences the methylene blue index. Also, the interactions between the drying temperature, the size of the biosorbent and the temperature have a significant influence on the adsorption capacities of the biosorbent. The application of the experimental design shows that the drying temperature, the size of the material, the amount of hypochloride and the stirring temperature have a preponderant effect on the model which is significant and adequate. The optimal values for biosorbent preparation are 00 for drying temperature (X1), -0.6519 for biosorbent size (X2), -1.0 for mass of hypochloride (X3) and -1.0 for agitation temperature (X4).

Published in American Journal of Applied Chemistry (Volume 11, Issue 2)
DOI 10.11648/j.ajac.20231102.11
Page(s) 50-59
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Optimization, Cocoa Pod Shells, Methylene Blue Index, Model, Experiment Plan

References
[1] Daud N. K., Ahmad M. A. & Hameed B. H. (2010). Decolorization of Acid Red In dye solution by Fenton-like process using Fe-Montmorillonite K 10. catalysis Chemical Engineering Journal, 165: 111-116.
[2] Bailey S. E., Olin T. J., Bricka R. M. & Adrian D. D. (1999). A review of potentially low-cost sorbents for heavy metals, Water Resource, 33: 2469–2479.
[3] Derbyshire F., Jagtoyen M., Andrews R., Rao A., Martin-Gullon I., Grulke E. (2001). Carbon materials in environmental applications. In: Chemistry and Physics of Carbon. (Eds), New York (USA), pp. 1-66.
[4] Gabaldòn C., Marzal P. & Seco A. (1996). Cadmium and zinc adsorption onto activated carbon: influence of temperature, pH and metal/carbon ratio. Journal of Chemical Technology & Biotechnology, 66: 279-285.
[5] Lòpez F. A., Perez C., Sainz E. & Alonso M. (1995). Adsorption of Pb (II) on blast furnace sludge. Journal of Chemical Technology & Biotechnology Journal of Chemical Technology & Biotechnology, 62: 200-206.
[6] Peternel W. S., Winkler-Hechenleitner A. A., & Gómez P. E. A. (1999). Adsorption of Cd (II) and Pb (II) onto functionalized formic lignin from sugar cane bagasse. Bioresource. Technology, 68: 95-100.
[7] AL-Asheh S., Duvnjak Z. (1994). Sorption of cadmium and other heavy metals by pine bark. Journal of Hazardous Materials, 56: 35-51.
[8] McKay G. & Ho. Y. S. (1999). Pseudo second-order model for sorption process. Process Biochemistry, 34: 451-465.
[9] Reddad Z. (2002). Procédés d'élimination desions métalliques par adsorption sur un polysaccharide naturel - Etude expérimentale et modélisation. Thèse de Doctorat, Université de Nantes (Nantes, France), 287p.
[10] Joseph O. (2005). Etude du potentiel d'utilisation des résidus agricoles solides pour le traitement d'eaux polluées. Mémoire de Master, INSA-LYON, Lyon, France, 46 p.
[11] Banerjee S. & Dastidar M. G. (2005). Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Bioresource Technology, 96: 1919- 1928.
[12] Fiol N., Villaescusa I., Martõnez M., Miralles N. & Poch J. (2006). Joan Serarols Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50: 132-140.
[13] Phan N. H., Rio S., Faur C., Le Coq L., Le Cloirec P. & Nguyen T. Hong. (2006). Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon, 44: 2569-2577.
[14] Kumar U. & Bandyopadhyay M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 97: 104-109.
[15] Djassou A. C. (2018). Elaboration de matériaux pour la dépollution environnementale à partir de coques de cabosses de cacao. Mémoire de Master en physique chimie Appliquée Option: Environnement, Université Jean Lorougnon Guédé Daloa, Côte d’Ivoire, 64 p.
[16] Antwi E., Engler N., Nelles M. & Schüch A. (2019). Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues. Waste Management, 88: 131-140.
[17] Kokora A. F., Kouadio D. L., Soro D. B., N’Guettia K. R., Dembele A. & Traoré S. K. (2018). Elimination d’un colorant textile sur des adsorbants issus de déchets agricoles. Revue Ivoirienne des Sciences et Technologies, 31: 39-54.
[18] Choumane F. Z. (2016). Elimination des métaux lourds et pesticides en solution aqueuse par des matrices argileuses. Thèse de doctorat, Université Abou Bekr Belkaid, (Tlemcen, Algérie), 187p.
[19] Abdallah M., Hijazi A., Hamieh M., Alameh M., Toufaily J. & Rammal H. (2016). Étude de l’adsorption du Bleu de Méthylène sur un biomatériau à base de l’eucalyptus selon la taille des particules. Journal of Materials and Environmental Science, 7 (11): 4036-4048.
[20] Boutaghane L. & Mekhzem F. (2018). Optimisation du procédé d’activation du charbon actif préparé à partir des grignons d’olive: application à la décoloration d’une huile alimentaire. Mémoire de Master. Université A. MIRA- Bejaia Alger, Algérie, 90p.
[21] Marouane S., Saile R. & Ech-Cherif El Kettani M. A. (2016). Les outils qualité au service de la recherche: L’optimisation du procédé de valorisation de la biomasse par les plans d’expériences. Journal of Materials and Environmental Science. 7 (1): 105-112.
[22] Siaka M. T. M. (2014). Elaboration de charbons actifs microporeux a base de résidus de mangues en vue d’épurer le biogaz. Master en ingénierie de l’eau et l’environnement. (Ouagadougou. Burkina faso). 45p.
[23] Raju Dr. Ch. A. I. & Reddy K. Sr. Bh. (2018), Studies on Biosorption of Titan Yellow Dye with Hyptis Suaveolens Powder and Optimization Through Central Composite Design. International Journal of Innovative Science and Research Technology. 3 (5): 582-597.
[24] Doudou M. (2017). Effets et optimisations des paramètres opératoires de l’élimination des colorants BM et AO10 d’une phase aqueuse par membranes liquides émulsionnées. Master Génie Chimique. Université Badji Mokhtar Annaba, Algérie, 104p.
[25] Aboua K. N. (2013). Optimisation par le plan factoriel complet des conditions de production de charbon actif et son utilisation pour 1 'élimination de colorants et de métaux lourds en solution aqueuses. Thèse de Doctorat, Université Félix Houphouet Boigny (Abidjan, Côte d'Ivoire), 164p.
[26] Boudjeniba-Bouzaouit N. (2012). Etude par simulation numériques de la réactivité dans la réaction d’acylation enzymatique de substrats osidiques. Magister en Chimie organique. Université Badji Mokhtar (Annaba, Algérie), 110 p.
[27] Aksu Z. (2001). Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technology, 21 (3): 285-294.
[28] Kouadio D. L., Koffi A. L. Ch., Diarra M., Kouyaté A., Yapi Y. A. H., Akesse Dj. P-V., Doungui K. B., Kone M., Dembélé A. & Traore S. K. (2019). Préparation et caractérisation de charbon actif issu de la coque de cacao. International Journal of Advanced Research, 7 (6): 920-930.
[29] Park, D., Yun, Y. -S., Park, J. M., 2010. The past, present, and future trends of biosorption. J. Biotechnol. Bioprocess Eng. 15, 86–102.
[30] El-Sayed G. O. (2011). Removal of methylene blue and crystal violet: from aqueous solutions by palm kemel fiber. Desalination, 272 (3): 225-232.
[31] Goupy J. & Creighton L. (2006). Introduction aux plans d’expériences introduction aux plans d’expériences. 3è Ed, Dumod, Paris (France), 336p.
Cite This Article
  • APA Style

    Kouadio David Léonce, Yapi Yapo Hermann Aristide, Meledje Djedjess Essoh Jules-César, Dalogo Kacou Alain Paterne, Akesse Djamatché Paul Valery, et al. (2023). Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index. American Journal of Applied Chemistry, 11(2), 50-59. https://doi.org/10.11648/j.ajac.20231102.11

    Copy | Download

    ACS Style

    Kouadio David Léonce; Yapi Yapo Hermann Aristide; Meledje Djedjess Essoh Jules-César; Dalogo Kacou Alain Paterne; Akesse Djamatché Paul Valery, et al. Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index. Am. J. Appl. Chem. 2023, 11(2), 50-59. doi: 10.11648/j.ajac.20231102.11

    Copy | Download

    AMA Style

    Kouadio David Léonce, Yapi Yapo Hermann Aristide, Meledje Djedjess Essoh Jules-César, Dalogo Kacou Alain Paterne, Akesse Djamatché Paul Valery, et al. Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index. Am J Appl Chem. 2023;11(2):50-59. doi: 10.11648/j.ajac.20231102.11

    Copy | Download

  • @article{10.11648/j.ajac.20231102.11,
      author = {Kouadio David Léonce and Yapi Yapo Hermann Aristide and Meledje Djedjess Essoh Jules-César and Dalogo Kacou Alain Paterne and Akesse Djamatché Paul Valery and Dibi Brou and Dongui Kouamé Bini and Traore Karim Sory},
      title = {Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index},
      journal = {American Journal of Applied Chemistry},
      volume = {11},
      number = {2},
      pages = {50-59},
      doi = {10.11648/j.ajac.20231102.11},
      url = {https://doi.org/10.11648/j.ajac.20231102.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20231102.11},
      abstract = {The objective of this study is to improve the preparation of a biosorbent from the cocoa pod shell by an experimental plan. The shells underwent drying and grinding followed by chemical impregnation with sodium hypochlorite. The process was optimized based on the analysis of the methylene blue index as a function of four factors: the drying temperature, the mass of the material, the mass of the hypochlorite and the agitation temperature of the preparation. This analysis based on the experimental plan reveals that under the preparation conditions the methylene blue index varies from 201.24 to 402.61 mg/g. Statistical analysis of the data shows that the size of the biosorbent is the factor that strongly influences the methylene blue index. Also, the interactions between the drying temperature, the size of the biosorbent and the temperature have a significant influence on the adsorption capacities of the biosorbent. The application of the experimental design shows that the drying temperature, the size of the material, the amount of hypochloride and the stirring temperature have a preponderant effect on the model which is significant and adequate. The optimal values for biosorbent preparation are 00 for drying temperature (X1), -0.6519 for biosorbent size (X2), -1.0 for mass of hypochloride (X3) and -1.0 for agitation temperature (X4).},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Contribution to the Modeling of a Biosorbent Derived from Cocoa Pod Shells on the Methylene Blue Index
    AU  - Kouadio David Léonce
    AU  - Yapi Yapo Hermann Aristide
    AU  - Meledje Djedjess Essoh Jules-César
    AU  - Dalogo Kacou Alain Paterne
    AU  - Akesse Djamatché Paul Valery
    AU  - Dibi Brou
    AU  - Dongui Kouamé Bini
    AU  - Traore Karim Sory
    Y1  - 2023/04/27
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajac.20231102.11
    DO  - 10.11648/j.ajac.20231102.11
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 50
    EP  - 59
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20231102.11
    AB  - The objective of this study is to improve the preparation of a biosorbent from the cocoa pod shell by an experimental plan. The shells underwent drying and grinding followed by chemical impregnation with sodium hypochlorite. The process was optimized based on the analysis of the methylene blue index as a function of four factors: the drying temperature, the mass of the material, the mass of the hypochlorite and the agitation temperature of the preparation. This analysis based on the experimental plan reveals that under the preparation conditions the methylene blue index varies from 201.24 to 402.61 mg/g. Statistical analysis of the data shows that the size of the biosorbent is the factor that strongly influences the methylene blue index. Also, the interactions between the drying temperature, the size of the biosorbent and the temperature have a significant influence on the adsorption capacities of the biosorbent. The application of the experimental design shows that the drying temperature, the size of the material, the amount of hypochloride and the stirring temperature have a preponderant effect on the model which is significant and adequate. The optimal values for biosorbent preparation are 00 for drying temperature (X1), -0.6519 for biosorbent size (X2), -1.0 for mass of hypochloride (X3) and -1.0 for agitation temperature (X4).
    VL  - 11
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Physical, Fundamental and Applied Sciences, Ecole Normale Supérieure (Abidjan), Abidjan, Ivory Coast

  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Environmental Sciences and Technology, Jean Lorougnon GUEDE University, Daloa, Ivory Coast

  • Laboratory of Environmental Sciences, University Nangui ABROGOUA, Abidjan, Ivory Coast

  • Sections