| Peer-Reviewed

Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay

Received: 18 January 2023    Accepted: 16 February 2023    Published: 28 February 2023
Views:       Downloads:
Abstract

Objective: The general objective of this work is to study the adsorption capacity of two heavy metals (Pb2+, Cu2+) by the fine sodic fraction of the clay collected in the locality of Loukoléla. Materials and Methods: The kinetics of adsorption allowed us to find a time of equilibrium of copper, lead with the mont-Na. The influence of the pH was carried out in basic and acid medium, the adsorption isotherm is obtained by drawing the curve of the adsorbed quantities according to the concentration at the equilibrium, the Langmuir isotherm was used to write the adsorption of copper and lead. Results: The equilibrium time is reached at t =20 min with an adsorption quantity of 64 mg/g for Cu2+; for the Pb2+ ion the equilibrium is reached after 25 minutes with an adsorption quantity of 43.2 mg/g of fixed metal. Two models were used for the modelling of this work, namely the Langmuir model and the Freudlich model. This study shows that the Langmuir model gives better results than the Freundlich model with a maximum adsorption capacity of the monolayer of 653.12 mg/g for Cu2+ and 100.388 mg/g for Pb2+, Loukoléla clay shows high affinities with copper particles compared to lead particles. These results show that Loukoléla clay can be used as an adsorbent for metallic pollutants.

Published in American Journal of Applied Chemistry (Volume 11, Issue 1)
DOI 10.11648/j.ajac.20231101.15
Page(s) 43-49
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Adsorption Kinetics, Heavy Metals, Clay

References
[1] Kouassi, N. L. B. Yao, K. M. Trokourey, A and Soro, B, 2015. Distribution, Sources, and Possible Adverse Biological Effects of Trace Metals in Surface Sediments of a Tropical Estuary. Environmental Forensics, 16: 96–108.
[2] HUYNH, T. D, 2009. Impacts des métaux lourds sur l’interaction plante/ver de terre/microflore tellurique. Thèse de doctorat en écologie microbienne. Université Paris Est.
[3] Khireddine, Ouahida, 2016. Étude de matériaux argileux et leur Impact sur l’adsorption de certains polluants, Thèse de doctorat, Université Badji Mokhtar Annaba, Algérie,
[4] Motsi, T, Rowson, N. A and Simmons M. J. H, 2009. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process, 92: 42–48.
[5] Boukerche, Chahinaz., BAAZIZE, Chachira., AKSAS, Hamouche. And AISSANI Amel, 2018, adsorption des métaux lourds (Chrome et Cadmium) par l’utilisation des adsorbants naturels: l’argile (bentonite), Mémoire de fin d’étude, Université M’hamed Bougera Boumerdas, Algérie.
[6] Ben, bjenidi., Nadja, 2017, Etude de l’élimination du Chrome par adsorption sur la bentonite activée, mémoire de Master, Université M’hamed Bougara-Boumerdes.
[7] Louzayadio M. R. F., Nkounkou L. C., Foto E., Ayessou N., Mar D. C. G. et Ouamba J-M., Qualité hydrochimique et contamination métallique des eaux distribuées sous canalisation dans la ville de Brazzaville, Congo, Afrique SCIENCE 15 (1) (2019) 227 - 241 ISSN 1813-548X, http://www.afriquescience.net
[8] NDOKI, Bernard, Matini Laurent, Moutou Joseph Marie and IFO Grace Modeling of trihalomethanes in the water distribution network of Brazzaville, Congo Vol. 7 (8), 1-10, August, 2018, Res. J. Recent Sci.
[9] Makosso, R. V, Diamouangana Mpissi. F. Z., Moutou, J. M, Banzouzi Samba, V. I, Foutou, M. P, Ngoma, J. P, 2021, Characterization and Valuation of a Clay Soil Sampled in Londéla-Kayes in the Republic of Congo Journal of Minerals and Materials Characterization and Engineering 9, 117-133.
[10] Oba, R. N. M, Ifo, G. M, Madila, E. E. N, Diamouangana Mpissi,. F. Z, Thierry Vila, Foutou M. Paul, Moutou, J. M, 2022, Characterization of the Clay Collected in the Locality of Dolisie in Congo-Brazzaville Journal of Minerals and Materials Characterization and Engineering, 10, 93-105.
[11] Moutou, J. M, Foutou, P. M, Matini, L, Banzouzi, S. V, Diamouangana, M. Z. F, Loubaki, R, 2018, Characterization and Evaluation of the Potential Uses of Mouyondzi Clay Journal of Minerals and Materials Characterization and Engineering 6, 119-138.
[12] Moutou, J. M., Diamouangana Mpissi Z. F., Ossebi J. G., Foutou, P. M. and Bibila, J. C., 2017, Mineralogical and Physicochemical Characterization of the Clay Soil in the Locality of Loukolela (Congo). Research Journal of Environmental and Earth Sciences, 9 (2), 14-23. DOI: 10.19026/rjees.9.5298.
[13] Dimouangan Mpissi, z. f., Moutou, j. m, Matini L., Mongo, Oladzou, Kouhounina Banzou L., (2019), Synthesis of an inorgano-clay complex from Loukolela clay and application in the adsorption of humic matter International Research Journal of Environmental Sciences Vol. 8 (3), 12-20, July.
[14] Achour S., Youcef L., Elimination du cadmium par adsorption sur bentonites sodique et calcique larhyss Journal, ISSN 1112-3680, n° 02, Juin 2003, (68-81) p.
[15] Steger H. F. (1973), On the mechanism of the adsorption of trace copper by bentonite Clays and Clays minerals, 21, (429-436) p.
[16] Youcef L., Ouakouak A., Achour S., (2011). Elimination de polluants minéraux et organiques des eaux par adsorption sur des eaux par adsorption sur une bentonite sodique. Séminaire international sur les ressources en eau au Sahara, 19-20 Janvier, Ouargla, Algérie.
[17] Youcef L. et Achour S., (2006). Élimination du cuivre par des procédés de précipitation chimique et d'adsorption. Courrier du Savoir, N°07, (59-65) p.
[18] Celedon s., Quiroz c., Gonzalez g., Sotomayor torres C. M., Benavente E. (2009), Lanthanides–clay nanocomposites: Synthesis, characterization and optical properties. Materials Research Bulletin. 44 (5), (1191–1194) p.
[19] Thierry Holtzapffel, (1985), Les minéraux argileux, Préparation, Analyse diffractométrique et détermination, Société géologique du Nord, Publication (1), 136p.
[20] Jiang M., Jin X., Lu X., Chen Z., (2010), Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination, No 252, (33–39) p.
[21] Abollino O., Aceto M., Malandrino M., Sarzanini C., Mentasti E., (2003). Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances, Water Resources, N° 37, (1619-1627) p.
[22] Michel. Aubineau, Alin. Bermond, Jacqes. Bougler, Bertrand. Ney et Jean. Roger-Estrade. « Le monde Agricole au XXIe siècle sous la direction de MARCEL MAZOYER, édition Mathilde Majoral assistée de Nora Schah, P59, 60/767».
[23] Aissa Mamoune S. M. (2009). «Caractérisation et modélisation des argiles de la région de Tlemcen en utilisant les réseaux de neurones» Thèse de doctorat de l’université de Tlemcen-Algérie.
Cite This Article
  • APA Style

    Ifo Grace Mazel, Diamouangana Mpissi Zita Flora, Kouhounina Banzouzi Merline Lady, Ndombo Ondouma Reine Chrisna, Dikitomene Kienga Francia Jessie, et al. (2023). Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay. American Journal of Applied Chemistry, 11(1), 43-49. https://doi.org/10.11648/j.ajac.20231101.15

    Copy | Download

    ACS Style

    Ifo Grace Mazel; Diamouangana Mpissi Zita Flora; Kouhounina Banzouzi Merline Lady; Ndombo Ondouma Reine Chrisna; Dikitomene Kienga Francia Jessie, et al. Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay. Am. J. Appl. Chem. 2023, 11(1), 43-49. doi: 10.11648/j.ajac.20231101.15

    Copy | Download

    AMA Style

    Ifo Grace Mazel, Diamouangana Mpissi Zita Flora, Kouhounina Banzouzi Merline Lady, Ndombo Ondouma Reine Chrisna, Dikitomene Kienga Francia Jessie, et al. Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay. Am J Appl Chem. 2023;11(1):43-49. doi: 10.11648/j.ajac.20231101.15

    Copy | Download

  • @article{10.11648/j.ajac.20231101.15,
      author = {Ifo Grace Mazel and Diamouangana Mpissi Zita Flora and Kouhounina Banzouzi Merline Lady and Ndombo Ondouma Reine Chrisna and Dikitomene Kienga Francia Jessie and Matini Laurent},
      title = {Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay},
      journal = {American Journal of Applied Chemistry},
      volume = {11},
      number = {1},
      pages = {43-49},
      doi = {10.11648/j.ajac.20231101.15},
      url = {https://doi.org/10.11648/j.ajac.20231101.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20231101.15},
      abstract = {Objective: The general objective of this work is to study the adsorption capacity of two heavy metals (Pb2+, Cu2+) by the fine sodic fraction of the clay collected in the locality of Loukoléla. Materials and Methods: The kinetics of adsorption allowed us to find a time of equilibrium of copper, lead with the mont-Na. The influence of the pH was carried out in basic and acid medium, the adsorption isotherm is obtained by drawing the curve of the adsorbed quantities according to the concentration at the equilibrium, the Langmuir isotherm was used to write the adsorption of copper and lead. Results: The equilibrium time is reached at t =20 min with an adsorption quantity of 64 mg/g for Cu2+; for the Pb2+ ion the equilibrium is reached after 25 minutes with an adsorption quantity of 43.2 mg/g of fixed metal. Two models were used for the modelling of this work, namely the Langmuir model and the Freudlich model. This study shows that the Langmuir model gives better results than the Freundlich model with a maximum adsorption capacity of the monolayer of 653.12 mg/g for Cu2+ and 100.388 mg/g for Pb2+, Loukoléla clay shows high affinities with copper particles compared to lead particles. These results show that Loukoléla clay can be used as an adsorbent for metallic pollutants.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Optimization of the Adsorption of Heavy Metals (Copper, Lead) in Aqueous Solution by the Fine Sodium Fraction of Loukolela Clay
    AU  - Ifo Grace Mazel
    AU  - Diamouangana Mpissi Zita Flora
    AU  - Kouhounina Banzouzi Merline Lady
    AU  - Ndombo Ondouma Reine Chrisna
    AU  - Dikitomene Kienga Francia Jessie
    AU  - Matini Laurent
    Y1  - 2023/02/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajac.20231101.15
    DO  - 10.11648/j.ajac.20231101.15
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 43
    EP  - 49
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20231101.15
    AB  - Objective: The general objective of this work is to study the adsorption capacity of two heavy metals (Pb2+, Cu2+) by the fine sodic fraction of the clay collected in the locality of Loukoléla. Materials and Methods: The kinetics of adsorption allowed us to find a time of equilibrium of copper, lead with the mont-Na. The influence of the pH was carried out in basic and acid medium, the adsorption isotherm is obtained by drawing the curve of the adsorbed quantities according to the concentration at the equilibrium, the Langmuir isotherm was used to write the adsorption of copper and lead. Results: The equilibrium time is reached at t =20 min with an adsorption quantity of 64 mg/g for Cu2+; for the Pb2+ ion the equilibrium is reached after 25 minutes with an adsorption quantity of 43.2 mg/g of fixed metal. Two models were used for the modelling of this work, namely the Langmuir model and the Freudlich model. This study shows that the Langmuir model gives better results than the Freundlich model with a maximum adsorption capacity of the monolayer of 653.12 mg/g for Cu2+ and 100.388 mg/g for Pb2+, Loukoléla clay shows high affinities with copper particles compared to lead particles. These results show that Loukoléla clay can be used as an adsorbent for metallic pollutants.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Laboratoire de Chimie Minérale et Appliquée, Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, Republic of the Congo

  • Sections